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SUMMARY

Ensemble, time, and space averages as applied to turbulent quantities are discussed, and pertinent

properties of the averages are obtained. Those properties, together with Reynolds decomposition, are

used to derive the averaged equations of motion and the one- and two-point moment or correlation equa-

tions. The terms in the various equations are interpreted. The closure problem of the averaged equations

is discussed, and possible closure schemes are considered. Those schemes usually require an input of sup-

plemental information unless the averaged equations are closed by calculating their terms by a numerical

solution of the original unaveraged equations. The law of the wall for velocities and temperatures, the

velocity- and temperature-defect laws, and the logarithmic laws for velocities and temperatures are derived.
Various notions of randomness and their relation to turbulence are considered in the light of ergodic theory.

INTRODUCTION

Although the unaveraged equations of the last chapter can, in principle, be applied directly to

turbulence, the historical tendency has been to average out the fluctuations so as to obtain simply vary-

ing functions. The idea is that simply varying nonrandom values are easier to deal with than the hap-

hazard motion characteristic of turbulent flow. Physically relevant equations are obtained in this way,

but the price to be paid as far as obtaining solutions is concerned (the closure problem) is considerable, as

will be seen later in this chapter. First we will consider various averages of the turbulent quantities.

4.1 AVERAGE VALUES AND THEIR PROPERTIES

For the most general turbulent flows an ensemble average over a large number of macroscopically

(but not microscopically) identical flows is appropriate. In all of those flows, the macroscopic determin-

ing parameters (e.g., mean velocity, scales, etc.), but not fluctuating quantities, are the same. The

ensemble average of a quantity, say the velocity, at a point x k and time t is the arithmetic average of

that quantity for all the flows. For instance, for a velocity component u i at point xk and time t,

N

ui(xk, t)n = lim _ ui(n, Xk, t)/N,
n-_ _ n=l

(4-1)

where n indicates the nth flow, N is the total number of flows over which the average is taken, and the

overbar with the subscript n designates the ensemble average (the average over n). Needless to say,

this type of average, although often used in theoretical work, would be hard to implement experimentally,

because a large number of macroscopically identical flows would not likely be available.



Fortunately,in mostcasesstatistical uniformity or statlonarity with respectto oneor morecoordi-
natesand/or with respectto timeobtains. Thenthe averageis takenwith respectto theoneor more
coordinatesand/or with respectto time. For instance, if the turbulence is statistically stationary with

respect to time (if the ensemble average does not vary with time t), the time average of u i at a point

xk is

= lira f: ui(xk, t)dt/T, (4-2)
T--_ ¢_

where the time average is designated by the overbar and the subscript t.

If the turbulence is statistically stationary with respect to one or more variable coordinates xj (if

the ensemble average does not vary with the one or more coordinates x.j), then the space average with
respect to xj at a time t and at fixed coordinate(s) Xk, where j # k, Is

ui(xk, t)xj = lira fXxj ui(xk, t, xj)dxj/(2Xj), (4-3)
Xj--* ,_

where the space average is designated by the overbar and the subscript xj, and the integration is over the

one or more coordinates xj for which statistical uniformity obtains. (Note that if j can have the values
1, 2, and 3, xk will be absent from equation (4-3), since k # j.)

A space average also makes sense for periodic boundary conditions, even if the turbulence is not

statistically uniform over one or more coordinates. In that case as in the preceding case, the space-

averaged quantities (averaged over a period) do not vary with position, since it makes no difference where

the period starts (_)xj/C_Xj = 0, k * j). Then

ui(xk, t)xj = f_Xxj ui(xk, t, xj)dxj/(2Xj), (4-4)

where 2Xj is one spatial period.

Finally, it might be useful to take the average over both time and one or more coordinates, when

the turbulence is statically stationary with respect to both. Then the average with respect to t and xj is

ui(xk)t,xi ---- lim fX_ f: ui(xk, t, xj)dt dxj/(2XjT).
Xj,T-. ,_

(4-5)

Of course, if the boundary conditions in equation (4-5) are periodic in some of the directions xj, the aver-
age in those directions need be taken only over one period, as in equation (4-4).

The averaging processes considered in this section have been illustrated by taking average values of

a velocity component u i. The same processes can, of course, be applied to the mechanical pressure a

(eq. (3-14)) and to functions of velocities and of pressures such as u.u.. u.u.u-, u.u.u-,' " and au-,' where
. IJ, IJ g IJK X

the unprimed, primed, and double-primed quantities refer to values at different spatial points. The u i in

equations (4-1) to (4-5) need only be replaced by a, uiuj, etc. It might be mentioned that the simplest

2



average which is descriptive of turbulence is not that of ui, which describes the overall flow rather than

the turbulence, but that of the second-order tensor uiu j.

4.1.1 Ergodic Theory and the Randomness of Turbulence

Turbulence is generally taken to be ergodic, in which case the ensemble, time, and space averages

of a turbulent quantity (say i j)u.u. should all have the same value, assuming that those averages exist.

An ergodic system embodies the weakest notion of randomness in a hierarchy of systems (refs. 1 and 2).

The so-called mixing systems (those whose variables become uncorrelated as their temporal separation

At --* oo) have a stronger notion of randomness than do those that are only ergodic, and systems that
exhibit sensitive dependence on initial conditions, or chaoticity, have a stronger notion of randomness

than do those that are only ergodic or only ergodic and mixing. Mixing implies ergodicity, and chaoticity

implies both ergodicity and mixing, but the converse is not true. At the top of the hierarchy are the

most random systems; those that, though deterministic, may appear in a certain sense to behave as ran-

domly as the numbers produced by a roulette wheel (ref. 1)

So in order for a flow to be identified as being random (or apparently random) in some sense, and

thus as turbulent, it must be at least ergodic. As mentioned in chapter [, turbulent systems appear to be

at least as random as chaotic systems. In chapter VI it is argued that they are likely more random.

Because of the ergodicity of turbulence a distinction among the various kinds of averages will not

usually be made, and they will be written simply as ui, uiuj, uia' , etc., the subscripts n, t and xj in

equations (4-1) to (4-5) being omitted. It will always be assumed, of course, that the averages taken are

of an appropriate type, in line with equations (4-1) to (4-5).

4.1.2 Remarks

The averaging considered here, which is known as Reynolds averaging, is the type which will be

used in this book. There are, of course, other types of averaging, which have specific uses. For instance

conditional averaging, in which averages are taken under some specified condition, such as the condition

that only velocities greater than some value be used in the average, is sometimes useful. However none of

the methods of averaging circumvents the closure problem (considered in section 4.3) which occurs when
the nonlinear continuum equations are averaged.

4.1.3 Properties of Averaged Values

Finally, we will consider some properties of averaged values which will be useful in obtaining the

averaged equations of fluid motion. We note first that the derivative of an average equals the average of

the derivative. Thus, for example, 0uiu j /0x k = 0uiu j /0x k. This equation can be obtained from equa-

tion (4-2) (with ui replaced by uiuj) if the average is taken over time. Thus



0Xk t0XkJtT-_ ® (4-(.,;)

The same result is obtained if the average is other than that over time. Also, it is easy to show that, the

sum of averages equals the average of the sum. Thus, again using equation (4-2),

uiu j' + u_ = lira fT (uiuj,)d tIT + lim fT (u;uj)dt/W
T-* ,_ 0 T-. ,,* 0

= lim fW (uiui, + ui,uj)d i / T ----uiu j' + u;uj .
0

T_ _*

(4-7)

Moreover, taking an average of an average (designated by a double bar) does not change its value, since,

for example,

uiuj_-lim J'T _dt/W_= uiuj lira fT dt/T :uiu i . (4-S)
T-, o_ 0 T--_ ,_ 0

Finally, the average of the product of an averaged and an unaveraged quantity is the product of the first

(averaged) quantity by the second quantity averaged. For example,

_iiCujUk) = lim f: _iCukuj)d,/T = u_ lim f: (UkUj)dt/T
T--_ ** T+ _ (4-9)

= u i UjUk •

As an example of a relation for averages which does not hold, we note that

uiu j # u i uj,

since

lim I T (uiuj)dt/T * lira f T uidt/T lira I T ujdi/T.
T_ _* 0 T_ ® 0 T--* _ 0

All of the preceding relations which were shown to hold for time averages hold, of course, for the

other kinds of averages. Thus, for instance, if we consider ensemble averages and use equation (4-1), we
find that



N

u iu_.. = lim E u_/N = u iuj, (4-8a)
N--, ** n=l

which is the same result as that obtained in equation (4-8) for time averages.

4.2 EQUATIONS IN TERMS OF MEAN AND FLUCTUATING COMPONENTS

Equations for mass, momentum, and energy conservation, as well as for the pressure, which are

general enough for all of the work in this book are given by equations (3-4), (3-18a), (3-34), and (3-21a)

respectively. We first rewrite those equations in slightly different forms and notations:

0fi i
= 0, (4-10)

0x i

_ _ 02fii (4-11)0tS----_i -- 0(fiifik.----_) - 10(a - ae) + u_-- -- fl('r -- Te)gi,

o_ Oxk p 0x i Ox k Ox k

and

_ O,._fiklt_"t + a 02_ (4-12)

0t 0x k 0X a 0X k

1 02( _ -- ae) 02(fiifik) 0r (4-13)

p 0X! 0X! -- -- _ii_kk -- _gi_ii "

These equations are the same as equations (3-4), (3-18a), (3-34), and (3-21a), except that ~'s have been

placed over the instantaneous velocities ui, mechanical pressures a, and temperatures T, and the non-
linear terms have been written in the so-called conservative form by using the continuity equation (4-10).

Following Reynolds (ref. 3), one can break the instantaneous quantities in equations (4-10) to (4-13)

into mean and fluctuating (or turbulent) components. That process is known as Reynolds decomposition.

Thus, set

ui = Ui + ui (4-14)

and

= P + a (4-15)

'r : T + r (4-16)



where the first and second terms on the right sides of the equations are respectively mean and fluctuating

components, and where

u_ -- a :- r -- 0, (4-17)

Ui = U=i, (4-18)

p : -_ (4-19)0",

and

= (4-2o)T=T.

As usual, the overbars designate averaged values. Equation (4-10) becomes, on using equations (4-14),

(4-17), (4-18), and the properties of averaged values given in equations (4-6) to (4-8),

OUk Ouk
= __ = 0 (4-21)

Oxk Oxk

which shows that both the mean and fluctuating velocity components satisfy conservation of mass. Equa-
tions (4-11) to (4-13) become, on using equations (4-14) to (4-20) and (4-6) to (4-8), taking averages, and

subtracting the averaged equations from the unaveraged ones,

_ _ _ 1 ig(e - 02ui OU i Ou i Ouiu kOui
-- ¢9(UiUk) ee) + __ _gi r --Uk Uk - + (4-22)

O_t O_ k P _X i O_Xk C_xk O_Xk O_Xk O_Xk

and

Or a(rUk) a2_ - o_r ar 0ruk

= -__ + a__ - u k_ - Uk__ + _, (4-23)
at O_Xk o_ k _x k ¢_3xk o'Xk _x k

__ 0ui OU k 02u--_
1 0(e - ae) a2(UiUk) 0r _ 2 + __ (4-24)

p o_ i 0x i -- - 0x i 0x-------_ - flgi o_x---_. 0x k Ox i o_xi 0x k

Equations (4-22) to (4-24) are useful for studying turbulence processes and for constructing evolution

equations for correlations (e.g., for u_). The first five terms of equation (4-22), the first three of equa-

tion (4-23), and the first three of equation (4-24) are similar to the terms in equations (4-11) to (4-13)

respectively, although their meanings are exactly the same only if Ui : T : P : 0 (see eqs. (4-14)
to (4-16)).

As was the case for equation (3-19) (or (4-11)), the first three terms on the right side of equation

(4-22), which give contributions to the rate of change of the velocity fluctuation 0ui/0t , can be inter-
preted as an inertia-force (or turbulence self-interaction) term, a pressure-force term, and a viscous-force

6



term. The remaining terms are, respectively, a buoyancy-force term, a turbulence-production term, a

mean-flow convection term, and a mean turbulent stress term, which may appear when the turbulence is

statistically inhomogeneous (when mean turbulence quantities such as uiu k are functions of position).

(The reasons for referring to the production and convection terms as such will perhaps become clearer

when the equivalent terms in the averaged equations are discussed.) It will be seen in the next chapter

that when the mean-velocity gradient is not zero, the term -Uk0Ui/0x k generates a small-scale struc-
ture in the turbulence by vortex stretching or by a breakup of eddies into smaller ones. The nonlinear

self-interaction term --63(UiUk)/O_Xk also produces a small-scale structure, and in addition produces ran-
domization of the flow. This effect will also be considered in the next chapter.

The terms on the right side of equation (4-23), which give contributions to the rate of change of

the temperature fluctuation Or/Ot, are respectively a nonlinear temperature-velocity interaction term, a

molecular diffusion term for temperature fluctuations, a production term for temperature fluctuations, a
mean-flow convection term for temperature fluctuations, and a mean turbulent heat-transfer term which

may be present when the turbulence is inhomogeneous.

The Poisson equation for the mechanical pressure fluctuations has four source terms--a nonlinear

term, a buoyancy term, a mean-velocity-gradient term, and a mean-turbulent-stress term which appears

when the turbulence is inhomogeneous.

4.3 AVERAGED EQUATIONS

Although the averaged equations for fluid motion do not form a closed (complete) set, they are

very useful for studying the physical processes in turbulence. Moreover, approximate solutions can be

obtained by introducing various closure schemes. Alternatively (or preferably), the terms in the averaged

equations can often be calculated from a numerical solution of the unaveraged equations.

4.3.1 Equations for Mean Flow and Mean Temperature

F_rst consider the equations obtained by averaging each term in equations (4-11) to (4-13) after

applying Reynolds decomposition (eqs. (4-14) to (4-20)) and using (4-21). This gives

P_0t :--PUk O_Xk-- 0xi + pU + -_i) PUiUk -- p/_(T- Te)gi, (4-25)

pc__ = -pcU k- - (4-26)
Ot Oxk Oxk[ Oxk

and

_( aU, / 02U,Uk OT (4-27)
02(P - %) - -P Uk - P_ - P/_gi--,

OX!O_X! _kk) ¢3X!O_Xk o%xi



where the properties of averages given by equations (4-6) to (4-9) were used. One should note that time

averages would not be appropriate in these equations unless averaged quantities change much more

slowly with respect to time (preferably infinitely more slowly) than the unaveraged quantities. Other-

wise, averages with respect to space variables in directions for which the turbulence is statistically sta-

tionary would be preferable. Equation (4-26) is written for a liquid; for a perfect gas c should be

replaced by Cp (see equation (3-35)). Equations (4-25) to (4-27) look like (4-11) to (4-13) with instan-
taneous values replaced by average values, but with the important difference that an extra term involving

uiu---_ or ukr now appears in each of the equations. These terms arise from the nonlinear velocity and

velocity-temperature terms in equations (4-11) to (4-13) and are a manifestation of the closure problem in

turbulence. If those terms were absent, the set of equations (4-25) to (4-27) would contain as many

unknowns as equations and so could be solved. In that case turbulent flows would be no more difficult to

calculate than laminar ones. Note that barred quantities in equations (4-25) to (4-27) which contain

lower-case letters are turbulent quantities. The term -PUiU k was discovered by O. Reynolds (ref. 3),

and is often called the Reynolds term or the Reynolds stress.

4.3.1.1 Interpretation of the terms -puiu k and pcukr.--The forms of equations (4-25) and (4-26)

suggest that the quantities -puiu k and pcukr respectively augment the molecular (or viscous) stress

tensor pv(OUi/Ox k + OUk/OXi) and the molecular heat transfer vector -pcac3T/cgx k. Since they involve

fluctuating or turbulent components, we interpret -puiu k as a turbulent (or Reynolds) stress tensor and

pcukr as a turbulent heat transfer vector. (The quantity uiu k is a second-order tensor, since it is the

average value of the product of two vectors (the average value of a tensor is a tensor), and ukr is a vec-

tor, since it is the average value of the product of a vector and a scalar (the average value of a vector is a

vector)). Thus in equations (4-25) and (4-26) we write

_ _- p.[0ui 0Uk/_
rki + -E:)  u,uk

(4-25a)

and

Qk : - pca__OT + pcukr, (4-26a)
Ox k

where Yki is the total stress tensor (the sum of the molecular and turbulent stress tensors), and Qk is
the total heat transfer vector (the sum of the molecular and turbulent heat transfer vectors).

We note that the expression for the turbulent stress corresponds exactly with that for the mole-

cular stress obtained in the kinetic theory of gases (see, e.g., ref. 4). It is only necessary to replace the

macroscopic turbulent velocity fluctuations in -PUiU k by random molecular velocities. A similar corre-

spondence exists in the expressions for the turbulent and molecular heat transfer, where the macroscopic

velocity and temperature fluctuations in pcukr are respectively replaced by a random molecular velocity

and molecular kinetic energy (molecular temperature) (ref. 4).

Consider now the term -puiu k for i * k. Then, for instance, --PUlU 2 will, in the presence of a

mean-velocity gradient 0U1/0x2, act like a turbulent shear stress on an x 1 - x3 plane. Similarly, pcu2r
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will, in the presence of a mean-temperature gradient dT/dx2, act like a turbulent heat transfer ill the

-x2-direction.

To see how these effects come about, consider'figure 4-1, where the curve represents either U l or 'F

plotted against x 2. Then if u 2 is positive at a particular location, the fluid will instantaneously be moving

into regions of higher U I (if OU1/dx 2 is positive as shown), and so u t will tend to be negative (the local

velocity will tend to be less than U1). Similarly, if u 2 is negative, the fluid will, instantaneously, be moving

into regions of lower Ul, and so u 1 will tend to be positive. In both eases the product utu. 2 will tend

to be negative, and so the average value utu 2 will be nonzero and negative. That is, there will be a

negative correlation between u 1 and u2. The quantity --pUlU 2 is the turbulent (Reynolds) shear stress

acting on an x 1 - x 3 plane and augments the molecular or viscous shear stress pvdU l/'dx 2 on that plane.

Of course if U l is uniform, ulu 2 will be zero; there will be no correlation between u t and u2.

A similar interpretation applies to pcu2r if the curve in figure 4-I represents the mean tempera-

ture T plotted against x 2. That is, when u 2 is positive at a particular xi, the fluid will, instantane-

ously, be moving into regions of higher T (if dT/c3x 2 is positive as shown), and so r will tend to be

negative (the local temperature will tend to be less than T). Similarly, when u 2 is negative r will

tend to be positive. In both cases the product u2r will tend to be negative. The average value u2r

will then be nonzero and negative, so that like the molecular conduction term, pcu_r will produce heat

transfer in the -x2-direction. If T is uniform there will, of course, be no correlation between u 2 and

r, and u2r will be zero.

Finally, we should say something about -Puiu k when i :: k. In that case puiu(i ) (no sum on

i) will act like a normal turbulent stress and will augment the normal molecular stress pt/dUi/dx(i ). For
2

instance -pu I will be the normal stress on an x 2 -- x 3 plane.

The existence of the turbulent stress tensor -PUiU---] and heat transfer vector peru--j is an impor-

tant and physically significant deduction from the continuum equations for fluids (the Navier-Stokes,

energy, and continuity equations). The deduction was obtained from those equations with no approxima-

tions by using only Reynolds decomposition and the rules for averaging. Unfortunately the procedure

does not provide a way of calculating the values of the turbulent stresses and heat transfer, and so we are,

left with a closure problem (more unknowns than equations). Next we will consider some simple closure
schemes.

4.3.2 Simple Closures of the Equations for Mean Flow and Temperature

In order to close the system of equations (4-25) to (4-27), that is, to write it in a form in which the

number of unknowns equals the number of equations, one must write the quantities uiu j and u k r in

terms of the mean velocity Ui, the mean temperature T, and x i. To do that we necessarily introduce

additional information into the equations, so that the theory is not deductive. However, because of the

practical importance of obtaining solutions, a great many closure proposals have been made.
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Probablythesimplestwayof closing the system of averaged equations would be to assume that uiu i

and u kr are respectively proportional to UiU j and UkT. One might suppose that this is a reasonable

assumption because UiU ] and UkT have the same dimensions as uiu j and ukr and are respectively

a second-order tensor and a vector (as are uiu'---"_ and u_). But consider what happens to the turbulent

stress terms in equations (4-25) and (4-27) for the simple case in which U i = _filU1, and U 1 is independent

of Xl; that is, the flow is fully developed. In that case the suggested closure assumption gives, in equa-
2

tions (4-25) and (4-27), O(pu_)/Ox k = O(pVlU1)/Ox 1 = 0, and /_2_/0x_0Xk=02(U1Ul)/0Xl : 0,

where p is constant. Thus the assumed form for uiu j would not appear in equations (4-25) and (4-27),

and there would be no effect of turbulence on fully developed flow. Since that result is contrary to exper-

ience, the proposed closure assumption cannot be reasonable. Evidently the conditions of correct dimen-

sionality and correct tensor properties, while necessary in a closure assumption, are not sufficient.

4.3.2.1 Eddy diffusivities.--Inadequacies such as that noted in the expression for uiu.. which was
just considered can be avoided by introducing the so-called eddy diffusivities. This can be done formally

by replacing molecular quantities in equations (3-13), (3-14), and (3-29) by turbulent quantities. Thus,

in those equations, a../p --* -u_.u.., Iz/p --+ e, q./(pc) --* 7-_.., and k/fpc_ --_ e-, where the arrows are
1 1 1 1 k ! 11, ,, .1 .. J .....

read becomes. In a_ciltlon, according to our notation for turbulent flow, the mean velomty m written

as U i. Then, for incompressible flow we get, for -uiu j and ruj,

-- uiu j = + -- Uk (4-28)

and

°_r (4-29)ruj = - e h __ ,
Oxj

where e is variously called the turbulent viscosity, eddy viscosity, or eddy diffusivity for momentum

transfer, and eh is the turbulent conductivity, eddy conductivity, or eddy diffusivity for heat transfer.

Unlike the molecular viscosity and conductivity in equations (3-13), (3-14), and (3-29), the eddy

diffusivities are functions of the character and intensity of the turbulence. We notice that equations (4-28)

and (4-29) do not suffer from the problems associated with the expressions given near the beginning of sec-

tion 4.3.2; in general they give nonzero values for both the turbulent stress and heat-transfer terms in

equations (4-25) to (4-27) for a fully developed flow in a channel or pipe. Moreover they give zero values

for UlU 2 and ru'--_ when the mean velocity and temperature gradients are zero, as they should at

the center of symmetrical flows (see section 4.3.1.1). For unsymmetrical flows equations (4-28) and (4-29)

may break down, but we shall not be concerned here with those flows. For statistically homogeneous

flows without mean velocity gradients equation (4-28) gives uiu j = UkUk (_ij/3, which is true only for iso-

tropic turbulence. However for homogeneous turbulence we will use other methods. The eddy diffusivi-

ties in equations (4-28) and (4-29) are scalars. Other expressions, in which they are tensors, have also

been proposed (ref. 5).

Equations (4-28) and (4-29) do not provide closures for the equations (4-25) to (4-27), since we still

do not know e and e h as functions of position and/or mean velocities. However they provide a framework
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in which uiuj and ruj arerespectivelya second-ordertensoranda vector,astheyshouldbe,and in
whichreasonableexpressionsfor uiuj and ru---j might be obtained. In general, expressions for those

quantities must be tailored to the particular problem being considered.

4.3.2.2 Mixing length.--Before considering specific expressions for the eddy diffusivities, we will intro-

duce Prandtl's mixing-length hypothesis (refs. 6 and 5) which gives a rough estimate of eh/e and which

gives an approximate picture of how momentum and heat might be transferred in a turbulent shear flow.

When turbulence exists in a flow, eddies or portions of fluid move about in an apparently random

fashion. If a mean velocity gradient and/or temperature gradient exist in a direction transverse to the

main flow, some of the eddies will move transversely into layers of different mean velocity and/or temper-

ature (see fig. 4-1 and sec. 4.3.1.1). Consider the turbulent fluctuations Ul_ and r at a point x i (see

eqs. (4-14) and (4-16). The mean velocity and temperature at that point are respectively U l and T,

and the mean gradients are in the x2-direction , as in figure 4-1.

According to mixing-length theory the fluctuations u 1 and r at x i are produced by an eddy or

turbulent particle which originates from an instability at another point. We define the virtual origin of

the eddy that produced the fluctuations u I and r at x i as the point xi, 0 where the eddy would have

been born with the mean velocity U 1 0 and temperature T o if the xl-momentum and temperature of

the eddy were conserved as It travels from x i 0 to x i (see fig. 4-1). Note that actual conservation need
not occur, since the virtual origin of the eddy 'can differ from its actual origin.

From equations (4-14) and (4-16), which define Reynolds decomposition, the fluctuations u 1 and

r at x i are given by

and

ul = fil - Ul (4-30)

r = T - T, (4-31)

where the ~'s designate total instantaneous quantities at xi, or mean values plus fluctuations. But mean

values plus fluctuations in equations (4-30) and (4-31), designated by fil and T respectively, are just

the total Xl-Velocity and temperature of the eddy considered in figure 4-1 and in the definition of virtual

origin in the last paragraph. According to that definition, if the eddy were born at the virtual origin xi, 0

with the mean Xl-Velocity UI, 0 and temperature To, then the xl-momentum anti temperature of that

eddy would be effectively conserved as it moves from x i 0 to x i. Thus 51 and T can be replaced by

U1, 0 and T o respectively. Equatmns (4-30) and (4-31) then become

Ul = UI,O _ U1 (4-32)

and

r = T o - T. (4-33)

Substituting equations (4-32) and (4-33) into -uiu 2 and ru2, we get

-ulu _ = (U 1- U1,0)u2
(4-34)
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and

ru2 _ -_ . (4-35)

Note that U 1 - U1. 0 = u 1 and T - T O = r are not removed from the bar since they vary with the

averaging variable(s)(xl, x3, and/or t). If we expand U 1 and T in Taylor series about U1, 0 and T O

respectively and retain only the first two terms in each, we get

dU 1 __ dU 1

- UlU2 = f2 _ u2 ---- _2u2 __dx2 (4-36)

and

dx 2 dx 2

where {2 = x2 - x2,0 and is designated the mixing length. Let i = 1, j = 2, and the mean flow be in
the xt-direction in equations (4-28) and (4-29). Comparison of those equations with equations (4-36)

and (4-37) then gives

e _- • h _ _2U2 . (4-38)

The relation between • and eh given by equation (4-38), besides following from mixing length theory,
gives good agreement with experiment except at low Prandtl numbers c#/k. At low Prandtl numbers,

as for liquid metals, the thermal conductivity k is generally so high that heat is conducted to or from an

eddy as it moves transversely. The temperatures in equation (4-35) will then have to be replaced by val-

ues which are closer together, and [_-_2[ will decrease (refs. 7 to 9). In this chapter we will not be con-

cerned with low Prandtl number fluids and will use equation (4-38).

Equations (4-36) and (4-37) have sometimes been criticized (often mercilessly) because they assume

that #2 is small enough that U 1 and T vary linearly over that distance, whereas in reality it may not
be. That problem could be overcome by retaining more terms in the Taylor-series expansions for

U1 - U1 0 and T - T 0. For instance in the expansion for U 1 - UI,0, we could retain an additional
term (1/_)_02U1/0x]. However that would complicate the analysis and may not be worth the effort,

since one can probably absorb any second-order effects in the expressions which are assumed for the eddy

diffusivity.

4.3.2.3 The nonuniformity of turbulent mixing.--A fundamental question about the nature of

turbulence concerns how turbulent mixing takes place. Here we consider the instantaneous turbulent

mixing which occurs in the presence of mean velocity and/or temperature gradients. We consider it at

this point because of its relevance to mixing-length theory. It turns out that nonuniform mixing is a

consequence of several known facts about turbulence.

Let us see what the presence of the turbulent stress and heat transfer terms in the equations for

mean flow and heat transfer (eqs. (4-25) and (4-26)) implies about the instantaneous turbulent mixing.

Instantaneous mixing refers here to the mixing one would see in a snapshot taken at a particular time.

12



Note first what would happen if the spatial pattern of instantaneous turbulent mixing were uni-

form, or nearly so. If that were the case, a portion of fluid as it moves transversely in mean velocity and

temperature gradients (mean velocity in the xl-direction ) would have a uniform tendency (because of

uniform mixing) to assume the mean xl-momentum and temperature of the surrounding fluid at each
point along its path. That tendency would be more pronounced at higher turbulence intensity or Reynolds

number, because small-scale motions become excited with increasing turbulence intensity (ref. 10), and so

the turbulent mixing (average or instantaneous) increases. (Note that turbulent mixing takes place most

efficiently by small-scale motions, since those provide the most intimate contact of the fluid entering a

region with that already there.)

Thus if the instantaneous turbulent mixing were spatially uniform, the tendency of a portion of

fluid to assume the mean xl-momentum and temperature of the surrounding fluid at each point as it
moves transversely would increase with increasing turbulence intensity. That would, however, cause the

fluctuations from the mean, u 1 and r in the turbulent stress -PUiU j and heat transfer pcruj, to

decrease in magnitude with increasing turbulence intensity or Reynolds number. The stress component

2 would then decrease. But that trend is unphysical and does not occur. In fact, as might be expected,
PU 1

2 increasesthe opposite trend occurs; as turbulence intensity (u--_-/3) 1/2 or Reynolds number increases, u 1

(ref. 11).

The instantaneous turbulent mixing therefore cannot be spatially uniform, or nearly so, as assumed

in obtaining the above unphysical trend. There must be regions of relative quiescence if xl-momentum
and heat are to be transferred turbulently at high turbulence intensities. But in that case there must also

be regions where the instantaneous mixing is relatively intense and localized, since that is the only way

the average mixing could be high for high turbulence intensities when regions of quiescence are present.
So the only sensible assumption about the instantaneous mixing is that it is small except in localized

regions, where it is intense. Then the above unphysical trends do not occur, since the tendency of a

portion of fluid, as it travels transversely, to assume the mean xl-momentum and temperature of the
surrounding fluid is sudden and is confined to localized regions. Note that even if the turbulence is

statistically homogeneous, the instantaneous turbulent mixing tends to be highly inhomogeneous.

The fact that instantaneous turbulent mixing takes place mainly in localized regions means that

the turbulence must be spatially intermittent in the small scales, since mixing, as mentioned before, takes

place mainly by small-scale motions. Intermittency in the small scales has been found experimentally

(ref. 12).

The localness or suddenness of the turbulent transfer considered in this section also seems to be in

agreement with the concept of bursting coherent structures in shear flow near a wall. Much work has

recently been done on that phenomenon (ref. 13).

Our result that instantaneous turbulent mixing is sudden and localized is congruous with mixing-

length theory, which requires a certain suddenness in the turbulent mixing for turbulent transfer to take

place. The mixing length can be thought of as the effective distance an eddy moves before mixing with

the surrounding fluid. If the mixing took place continuously the mixing length would be zero, and the

turbulent shear stress and heat transfer would be zero (eqs. (4-36) and (4-37)).

Thus, although fluid turbulence occurs in a continuum, changes in the momentum and temperature

of a moving portion of fluid tend to be sudden and localized. In that respect turbulent systems are not
unlike the systems considered in the kinetic theory of gases, where encounters between particles are

sudden and localized. It is of interest that it was apparently kinetic theory that originally inspired

13



turbulentmixing-lengththeory; the mixing lengthwassupposedto besomethinglike the meanfreepath
of kinetic theory (ref. 6).

4.3.2.4Some conditions satisfied by the turbulent shear stress and heat transfer near a wall.--It

may be helpful in obtaining models for the turbulent shear stress and heat transfer (or for the eddy

diffusivities for momentum and heat transfer) to determine conditions which must be satisfied by those

quantities in the region near a wall. Moreover the results obtained in this section, so far as t,hey go, are

exact, depending only on the continuity equation and the boundary conditions for the velocity and tem-

perature fluctuations. The results for the turbulent shear stress have been given previously, for example
in reference 14.

Consider an incompressible nonrarefled flow in the xl-direction parallel to a wall. The normal to

the wall is in the x2-direction , with x 2 -- 0 at the wall. The continuity equation is

- + __ + __ = 0. (4-39)
_i _1 _2 _3

Since the flow is nonrarefied, the nonslip condition holds at the wall, so that

(U0x _-0-- (U2)x _-0= (U3)x =o= 0 (,1-40)

at every point on the wall. Thus

= O. (4-41)

Equation (4-39) then gives, at the wall,

= 0 . (4-42)

Consider now the turbulent shear stress --flUlU 2 . Then

OUlU2 0112 OUl (4-43)
_. _ u 1 -- -- u 2 --

0x 2 Ox2 dx 2

02UlU 2

2

Ox_

-- --Ul --

02U2 OU 1 0112 i_U 1

-2____ -u 2 __
2 Ox2 Ox2 2

Ox2 Ox 2

(,t-44)
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and

03ulu2 Oau2 du I 02u2 du2&u x _u,
- - u I __ - 3 - 3 - u 2 __

3 3 dx2 2 dx2 2 3
dx2 dx2 dx2 dx2 dx2

(,1-45)

where the properties of averages given by equations (4-6) and (4-7) were used. By using equations (,1-,10),

(4-42), and (4-43) to (4-45) we get, at the wall,

- (u-_2)x2-_o= o, (,1-46)

-- o, (4-,,7)

and

( 2L2=0
= o, (4-48)

/ 3 °_x2
( 2 _x2=O _22 Jx2=O

(4-49)

Since the zero'th, first, and second derivatives are zero at the wall, -UlU2, starting at zero, increases

very slowly with x 2 near the wall. The third derivative (see eq. (4-49)) gives no information, since at

least at this stage, we do not know how to evaluate -(0Ul/0X 2 02u2/0x2_)x2=0_ . Thus

(4-50)

A similar result holds for higher-order derivatives.

As an example, determine whether

--UlU 2 (x x128/5
(4-5t)
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is in agreement with equations (4-46) to (4-50). Equation (4-51) and its derivatives give, at the wall,
_. 2 -- 3

-(Ul----_2 x2=0 = -(0u--_2/0x2)x2=0 : -(o_ulu2/0X2)x2=0 : 0 and (03ulu2/0X2)x2= 0 = oo. Since these
evaluations are in agreement with equations (4-46) to (4-50), equation (4-51) satisfies continuity and the

nonslip boundary conditions for u i at the wall. In section 4.3.2.9 we will see that it also gives results in

agreement with experiment.

Next consider the turbulent heat transfer pcru 2. Although the procedure is similar to that for the

turbulent shear stress, the results can be different because the temperature fluctuation r at the wall may

not be zero if the thermal conductivity of the wall material is not sufficiently high. Thus consider two cases,

rx2=O _, 0 (4-52)

for low thermal conductivity of the wall material, and

rx2=0 = 0 (4-53)

for high thermal conductivity of the wall material. Then, proceeding as for UlU 2, we have

Oru2 Oru2 0u2 _- (4-54)
-- =r -i-U2__ ,

¢9x2 ax 2 ax 2 O_X2

and

O u2 Or a%
= r_ -}- 2___ -}- u2_ ,

2 2 _2 _2 2
&c2 _2 _2

_3ru2 a3u2 Or _2u2 3 _12 _2r a37
-- r_ +3 + -- +u2--.

3 3 _2 2 _X 2 2 3
_2 ax2 ax2 _2 _2

(4-55)

(4-56)

Using equations (4-40), (4-42), (4-52), and (4-54) to (4-56), we get, for a wall with low thermal

conductivity,

(r'_2)x2= 0 = O, (4-57)

=0, (4-58)
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and

/ _/x_=0
, (,,-5:_)

[ 2L_=o/ _Jx==oI "/+ 3 Or c_u_

0x2 2
Ox2 x2::0

Again, since we cannot evaluate the right side of equation (4-59),

O< __ <_¢o

[0x22 2: o

(,1-60)

A similar result holds for the third and higher derivatives.

On the other hand, equations (4-40), (4-42), (4-53), and (4-54) to (4-56) give, for a wall with high

thermal conductivity,

(_-_2)x_:0: 0, (_1-6,)

:= 0_
(4-62)

/ _Jx2=o
0, (4-6:_)

3I (4-64)
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and

o<l <:
- _ - (4-65)

I 2 [,2_-o

A result similar to equation (4-65) holds for the fourth and higher derivatives.

So, like the turbulent shear stress, the turbulent heat transfer is zero at a wall and increases very

slowly with x_ near a wall. However I_'121 may increase slightly more rapidly than lu--_l if the

wall thermal conductivity is low, since in that case (i_ru2/0X2)x2=0 may be nonzero. But since an

effect of wall thermal conductivity on turbulent heat transfer does not seem to have been measured, and

since equality of eddy diffusivities for heat and momentum transfer gives good results, this possible dif-

ference may not be significant in most situations. Of course, new work may show otherwise.

4.3.2.5 Specialization of equations (4-25) and (4-26) for fully developed parallel mean flow and fully
developed heat transfer without buoyancy.--For simplicity consider a turbulent flow between two infinite

parallel walls, which may or may not be moving. The flow is fully developed in space and time and is in

the xl-direction. The direction normal to the walls is x 2. Fully developed flow is here taken to mean

that all of the dependent variables in equation (4-25) except the pressure are independent of time and x 1.
The pressure may vary with x r If we neglect buoyancy effects by letting gi = 0, equation (4-25) be-
comes, for i = 1 and 2,

+ dx2t dx2
(4-66)

and

OP du--_ (4-67)
0=-__-p__

Ox2 dx 2

Note that by virtue of the equation following (3-22), o e drops out of equation (4-25) for

entiating equation (4-67) with respect to x 1 gives

_ltdX2J
=0,

gi : O. Differ-

(4-68)

since us = u2(x2) does not change with x x for fully developed flow. Integrating equation (4-66) with

respect to x 2 (using eqs. (4-68) and (4-25a)) then gives

OP dUl
--X2 + C1 = P//-- -- PUlU2 = *'21' (4-69)
Ox1 dx 2
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where C 1 is a constant of integration whose value depends on the boundary conditions, and r_l is the
total averaged shear stress (the sum of the molecular and turbulent parts). According to equation (4-69)

the total shear stress varies linearly with x2.

For the case where both walls are stationary, dU1/dx _ = ulu _ = r21 = 0

Cat = (x2)¢),and
at the channel center

c 1 (x) 0P
= - 2 COx--_ "

(4-7o)

Using that value for C1, equation (4-69) becomes, at x 2 = 0,

: =
0x 1

and

x2 pvdU1 _ __ r21 (4-71)I -- -- P UlU 2 = --.

(X )c

Thus the total shear stress r21 varies linearly with distance from the wall, being a maximum at the wall

and zero at the channel center. Since the turbulent shear stress -pulu 2 is much greater than the mole-

cular shear stress pvdU1/dx2, except in the immediate vicinity of the wall, -UlU 2 also varies linearly

with x_ over most of the channel cross-section. At the wall, of course, unlike the total shear stress

r_l , -ulu 2 is zero because the velocity fluctuations are zero.

Next consider the energy equation (eq. (4-26)) for the case to which equation (4-69) applies (a
steady, turbulent, unidirectional, fully developed mean flow between infinite parallel walls). The mean

temperature is also steady, and the flow is fully developed thermally. Equation (4-26) can then be

written using equation (4-26a), as

-- pca__ - pc + pca__- pc_r : - - ,
O_Xl 1 OXl Ox2 _1

where Q1 and Q2 are respectively the total (time-averaged) heat transfer (molecular plus turbulent) in

the x 1- and xz-directions. Fully developed thermally is here taken to mean that the molecular and tur-

bulent heat-transfer vectors are independent of x 1. This definition is consistent with equation (4-72), as

can be seen by differentiation of that equation with respect to x 1. (Note that although the left side of
equation (4-72) was not assumed independent of x l, that independence follows from the independence of

x I of the molecular heat-transfer vector.) Then equation (4-72) becomes, for fully developed heat transfer,
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d I ]pcU10x 1 dx2[ Ox 2 dx,_
(,1-7:_)

or

• OT -- Q2
0T j ul(xz)dx 2 + C_ ::=a__ ,,_ __,
OxI dx 2 pc

(,I-7,_)

where OT/Ox 1 is written outside the integral sign, since the flow is fully developed thermally

((0/0_,)(_0T/_2) -: 0 -: (0/0_2(0T/0xl)).

4.3.2.6 Law of the wall.--Equations (4-11) and (4-13) can be written in dimensionless form h)r

gi = 0 as

and

-I- -t

_,' a(a_ r,k ) a;" °2a."

dt ÷ dx k i dXk &Xk

+ + Ox+Ox _dx_ c3x_ i k

(.7_)

(_i-76)

where over a quantity indicates a total instantaneous value (mean plus fluctuating), and where

u. : x. : a : and t

' _/p' ' v "rw/P P_'

(4-77)

(The quantity o e drops out of the set of equations since gi :: 0 (see equation following (3-22)).)

The set of equations (4-75) and (4-76) contains four equations in the four unknowns utt, u,_, u:t_,
and b+. Thus one could do a thought experiment, starting from given initial conditions. Using appro-

+ = 0 for x_ = 0, 2(x_)¢, a solution of equations (4-75)priate boundary conditions at the walls (e.g., u i
and (4-76) could, in principle, be obtained. For fully developed statistically steady flow one would have

to consider a region far from the channel entrance and times large enough for the solution to become inde-
x +pendent of initial conditions. The parameter in this system is ( 2)¢, which appears as I/2 the maximum

value of x_ (the walls are 2(_)_ units apart). The quantity (x_) c _ (x2) c Crw/P/v is a kind of Reynolds
w-----

number, since ¢_w/P is a velocity (called the friction velocity). The solution of equations (4-75) and (4-76),

with boundary conditions at x_ = 0 and 2(x_) c, gives
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tl i ---- Ui , t , c

and

1: 17 X k _ , X 2 c .

--7
However, since mean values are steady and fully developed, u;u_ (see eq, (4-14)), and n 1

eq. (4-18)), are not functions of x_-, x_, or t +. Thus,

u lu 2 : u lu 2 x_, (x 2)c,

and

(4-78)

- [ ,+ _ U; + + (4-79Ul : U1 : x2, (x2 c"

Next let (x+_ --* o, Then for the region where x + << {x+_ , the parameter (x+_ drops out of
x _/c ' _ x _/c ._ _*C • •

the determining boundary conditions. That occurs because the only boundary condition determining the

turbulence at x-_ << (x_) c is the one at the near wall, the boundary condition at x_ - 2(x_) c --_

having no effect. So equations (4-78) and (4-79) become, for +(x2) c ---* _ and x_ << (x2)c,

and

-I- + + + +

ulu 2 =u lu2(x2), (4-80)

+ 4

For the present fully developed unidirectional flow, the eddy viscosity from equation (4-28) is

(4-81)

or

ulu2 (4-82)

dU 1/dx 2

+ +

e = _ UlU2 (4-83)
+ ÷

u dU l /dx2

So, from equations (4-78) and (4-79),

(X2)c, (4-84)

21



or, from equations (4-80) and (4-81),

_ ÷
_ ---- _(x2) (4-85)
/1 v

for << c and ®.

The fact that equations (4-80), (4-81), and (4-85) hold for x-_< < (x_)¢ and (x_)¢ -4 oo is often
called the law of the wall. Although that is usually considered to be an empirical law, we have obtained

it here by using the Navier-Stokes equations in a thought experiment. Note that if one considers the
+ +

region so close to the wall that u 1u s --* 0, the so-called laminar sublayer, equations (4-71) and (4-77)

give (for x 2 << (x_)c)

or

du;
+

dx 2

+ +

01 = X2 •

(4-86)

(4-87)

4.3.2.7 The velocity-defect/aw.--Consider now the central region of the channel, sometimes

referred to as the region away from the wall. As in the last section the flow is fully developed and

statistically steady. We write equations (4-75) and (4-76) as

and

where

l O(Ui Uk) _ + 1 i

oft* _Xk* 0X71 (X2)cO_Xk0Xk

* * OX*_X*Oxl Oxl i k

(4-88)

, (4-89)

* = Xi + = (X2)c _ and t* = t _ (4-90)

xi (x2)c . (x,.)c

The quantities ~+ and b+u i are defined in equation (4-77). Proceeding as for the law of the wall in the

last section, we note that equations (4-88) and (4-89) constitute a set of four equations in the four
It

unknowns fiT, ~+ ~+ a+"uS,u3, and Here the walls where the boundary conditions are set are at x s --- 0, 2
(e.g., u i~+ --- 0 at x 2 = 0, 2). As in the last section we do a thought experiment, starting with given
initial conditions. We consider a cross section where the mean flow is fully developed and continue the
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solution until the flow is statistically steady. Then equations (4-88) and (4-89), or their solution, show

that

and

= U. Xk, X 2 cui

Note that whereas in the last section (x_) c was included in the functional relations because of its use for

the location of the boundary condition at x_ = 0, 2(x_)c, here it is included because of its appearance in

the differential equation (4-88); (x_) c is not needed for the location of the boundary condition at x 2 - 2.

+ +

, Since mean values are steady and fully developed, u 2 = U 1 (see eq. (4-18)) is not a function of

Xl, x;, or t*, as are the unaveraged quantities in equations (4-91) and (4-92). Thus

r
~ + + +['1 _ +

U 1 = U 1 ---- U 1 Ix2, (X2)c

(4-93)

Now we confine our attention to the region away from the wall and let (x_) c -_ 0% so that the vis-

X+cows term, including ( 2)c, drops out of equation (4-88). Batchelor explains this loss of the influence of

viscosity in the context of Fourier analysis (ref. 12). He notes that the region of wavenumber space

which is affected by the action of viscous forces moves out from the origin toward a wavenumber of infin-

ity as the Reynolds number increases. In the limit of infinite Reynolds number (infinite (x_) c in our

case) the sink of energy is displaced to infinity, and the influence of viscous forces is negligible for wave-

numbers (reciprocal eddy sizes) of finite magnitude. (See chapter V for a discussion of Fourier analysis.)

Thus, for (x_) c --+ 0% equation (4-93) can be written, for the region away from the wall, as

U - (U 1 )c 1 -- (U1)c (x ,
(4-94)

where (U]) c is the value of U_ at the channel midpoint. Equation (4-94) is written with U_ - (U_) c

as the dependent variable to ensure that curves for different Reynolds numbers will collapse at the chan-

nel midpoint. According to equation (4-94) they will then also collapse at points near the midpoint. The

quantity U_ - (U_) c is called the dimensionless velocity defect, and equation (4-94), which applies in

the central region of the channel when viscous forces are negligible there (when (x_) c --, oo), is known as

the velocity-defect law. 1 As in the case of the law of the wall, equation (4-94) is usually considered to be

an empirical law, but it is obtained here by using the Navier-Stokes equations in a thought experiment.

1Note that letting (x_) c --_ oo and neglecting the viscous terms in equations (4-88) destroys the
accuracy of the solution near the wall, since viscous effects are not negligible there. But as already

shown, letting (x_) c ---* oo preserves the accuracy in the region away from the wall, the region we are

interested in here, since viscous effects are negligible away from the wall.
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4.3.2.8The logarithmic law.--Next we want to determine the fi)rm of t;he mean velocity profih,

required in a possible overlap region, where equation (4-81) (the law of the wall), and equation (.1-9-1)

(the velocity defect law), both apply. From equations (4-71), (4-83), and (4-8,1), which apply over a

whole channel cross section in the fully developed region, we get

x2 e + + d[!l _

1 - __ = 1 _ g x2' (x2)c , (,1-:)5)

It is known that, except in the immediate vicinity of the wall, where x_ is less than say 70, the
molecular shear stress is much smaller than the turbulent. We will show later in this section that our

results are consistent with that statement. Thus, neglecting the molecular shear stress in equation (.1-95)
we have

__

+ 4

__. -- _ x2, (x2)¢
ix;) " dx;

C

(I-96)

In order that equation (4-81) (the law of the wall) will hold, we confine the range of eq,m-
tion (4-96) to + + X {_ {-X2/(X2) c << 1, but at the same time keep 2/(X2)c large enough that, the turbuhmt

stress is large compared with the molecular stress. 2 For that range we can use equation (,1-85) in equa-
tion (4-96). The latter then becomes

1 = -_(x2)dU-+: (4-97)

v dx;

Note that equation (4-97), when integrated from x 2 0 (at the near wall) to x2, is in the form of equa-
tion (4-81), and is thus an expression of the law of the wall.

To ensure that equation (4-97) will also satisfy equation (4-94), the velocity-defect law, we first
+

write the former in terms of x; = x2/(x2) c = x2/(x2)¢, (X2)c, and the dimensionless velocity defect

(U_) c - U_. That gives

I,+ :j
[(+ .]d1 = - e x 2)cx2 + •

v (x2) c dx 2

(4-98)

2The range of x_ for which that is possible increases as (u_) c -* _ the latter was assumed for
obtaining the velocity-defect law and the law of the wall.
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where the subscript c refers to values at the channel center.

tion (4-94), then (x_) c must cancel out of equation (4-98).
X +tional to ( 2)c, so that

If equation (4-98) is to agree with equa-

For that to happen, e/u must be propor-

• (x = x2)cx2 K(x 2 )cx2 Kx2,
V

where K is a constant (called the K_irm_n constant). Then equation (4-98) becomes

d )c (4-100)1 = -Kx;

dx 2

which, when integrated from x 2 = 1 (at the channel center) to x2, is in agreement with equation (4-94).

Thus, only when e/v is given by equation3(4-99 ) does equation (4-97) satisfy both equations (4-81)
and (4-94), as it must in an overlap region. Substituting equation (4-99) into equation (4-97) gives

or, on integration,

1 = Kx 2 __ ,
+

dx 2

(4-101)

÷ 1 +
L)1 = _lnx 2 + C . (4-102)

K

Equation (4-102) is the well known logarithmic velocity distribution which applies to the portion of the

law-of-the-wall region where the turbulent shear stress is much greater than the molecular. It can be

obtained in a number of ways (e.g., ref. 15), but is obtained here from equations (4-81) and (4-94) by
assuming an overlap region. That was first done by Millikan, but in a somewhat different way (ref. 16).

Besides obtaining the logarithmic law, we have shown that any expression for e/v which satisfies both

the law of the wall and the velocity defect law in some overlap region must, according to our analysis,

reduce to Kx_ in that region (eq. (4-99)).

We can now see whether the assumption that the turbulent shear stress is much greater than the

molecular shear stress except very close to the wall, where x_ is less than about 70, is in agreement with

our results. Substituting the expression for e/v in equation (4-99) into equation (4-95) gives

3Actually, there are expressions for s/v which satisfy both equations (4-81) and (4-94) but which

have an appearance which differs from that of equation (4-99). However, they reduce to equation (4-99).
For example, Prandtl's mixing-length expression (ref. 6) and yon Kgrmgn's similarity expression (ref. 15)

are both of the form (e/v) = (e/v)(U_, x_) and satisfy equations (4-81) and (4-94). But (e/v) -

= x+(_.), x_] -- (e/v)(x_). This agrees with equation (4-85) and leads to equation
(4-99). Equation (4-99) is simpler than the other expressions for e/v and, since the other expressions

reduce to it, may be more fundamental.
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+

x 2 dU;
I - -- (1 + Kx;)--, (4-103)

so that the ratio of turbulent to molecular shear stress is Kx_/1. Since K "_ 0.4 the turbulent shear

stress is more than an order of magnitude greater than the molecular stress for x_ > 70.

4.3.2.9 An expression for e//l/ for fully developed flow which applies at all distances from a
wall.--We now give a general expression for the eddy diffusivity which satisfies conditions given in

sections 4.3.2.4 and 4.3.2.6 to 4.3.2.8, and which applies across the whole channel in the fully developed

region. The expression is

where

L

11/¢ X 2

_=Lx 1 - _. ,
+

v (x2)

I +1S/5 +13/5

aU 1 for aU 1 < 2/5

+13/5

2/5 for aU t > 2/5

(4-104)

(4-105)

and a = 3x 10-4.

Using equation (4-104) to close equation (4-95), a fully developed form of the equation for the mean flow,

we get

t J4tx2 x2 dU:
I- __ - I ÷Lx I- u _,

+ + +

(×2)c (x2)c dx2

(4-ioo)

where L is given by equation (4-105).

Consider now whether the conditions obtained in sections 4.3.2.4 and 4.3.2.6 to 4.3.2.8 are satisfied

by equations (4-104) to (4-106). First note that those equations satisfy equations (4-79) and (4-84) for

0 < x_ < 0o. Then for x_ << (x_) c they agree with the law-of-the-wall equations (4-81) and (4-85). As
+ + +

tioX+gnal0, equation (4-86) or (4-87)is satisfied. That is,._s,_asx,, _ 0,. U,I becomes equal_ to xo., An addi-
condition satisfied as x_ --, 0 is that e/u -_ x_ 1 /_, which is equivalent to equation (4-51). This

follows from evaluating equations (4-104) and (4-105) for small values of x_ and using equation (4-87).
Then by using equations (4-83) and (4-86), we get equation (4-51), which in turn satisfies equations (4-40)
to (4-50). These last equations are consequences of continuity and the nonslip boundary condition at the

wall, so the expression for e/u given by equations (4-104) and (4-105) is also in agreement with those

consequences.
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Next consider whether equation (4-106) satisfies the velocity defect law (eq. (4-94)) for the region

away from the wall, where the turbulent shear stress is much greater than the molecular (where x_ is
greater than say 70). For that region equation (4-106) can be written as

. [. :]
1= _ x2),/ d(,:,)c u (4-107)

where x2 = x_/(x_) c. But equation (4-107) when integrated from the channel center to x2, is in the
form of equation (4-94). Thus equation (4-106), from which equation (4-107) is obtained for the region

away from the wall, satisfies the velocity-defect law in that region. Integration of equation (4-107) gives

( u, = 2
1 + (1 - x;)'/4!

I

1 - (1 _ x2jo,,/4',

_ *_1/45 tan-l(1 - xij
(4-108)

for our velocity-defect law.

x +Finally, for the law-of-the-wall region, where x_ << ( 2)c' equation (4-106) becomes

1 1 + 2 _/dU, (4-109)
-_- --X 2

5 dx 2

Then for the part of that region where the turbulent shear stress is much greater than the molecular (the

region away from the wall), we have

which, when integrated, becomes

2 ,dU;

4-

1 = gx2 dx2

(4-110)

+ 5 + (4-111)U, = _ In x 2 + C,
2

which agrees with the logarithmic distribution in equation (4-102).

Equation (4-I06) is plotted semilogarithmicaily for several values of (x_)c in figure 4-2. Also
included in the plot are some experimental data from references I1 and 15, and a numerical solution

(direct numerical simulation) of the unaveraged Navier-Stokes equations from reference 17. Although the

experimental data are for a pipe, and equation (4-106) was obtained for a flat channel, a similar equation

is obtained for a pipe by letting (x2) c be the radius of the pipe. For the region close to a wall, the flow
in a pipe should be similar to that in a channel, since, for that region the pipe wall could be considered
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fiat. Also, for a pipe,aswell asfor a channel,the total shearstressvarieslinearlywith wall distance,as
canbeshownby writing a forcebalanceonan elementof fluid for bothconfigurations.It is conceivable
that theeddydiffusivity for thecentralregionmight bedifferentfor thetwo configurations,but such
differencesarenot apparentin figure4-2. Equation(4-106)appearsto representboth the dataandthe
numericalsolutionquite well.

We cancalculatefriction factorasa functionof Reynoldsnumberby usingthe velocitydistribu-
tion from equation(4-106). Sincewewill becomparingthe calculatedfriction factorswith thoseobtained
experimentallyfor a pipe,the quantity (x2)c will be thepiperadius(seethe lastparagraph). Thefric-
tion factor f is givenby

% 2
f : : --, (4-112)

 u o/2 u2

and the Reynolds number Re is obtained from

Re 2(x2)¢U" + V+, (4-t13)
V

where U + is a dimensionless bulk or mixed-mean velocity and is given by

U + _ Ua'
c 4 4- 4

_ %) xz) c - x z U_ 2 X 2)c J0 (4-114)

for a pipe.

A plot of friction factor versus Reynolds number, as obtained from equations (4-106), (4-112),
and (4-13), is compared with experimental data for turbulent flow in a pipe in figure 4-3. As in the case

of the velocity distribution in figure 4-2 the agreement is quite good.

4.3.2.10 Thermal law of the wall, temperature-defect law, and temperature logarithmic law.--Laws
analogous to those obtained for the mean velocity distribution in sections 4.3.2.6 to 4.3.2.8 can be

obtained for the mean temperature distribution when fully developed heat transfer, in addition to fully
developed flow, occurs in a passage. The procedures are similar, and so this section will not be detailed.

The main difference here is that the energy equation (4-12) (in appropriate dimensionless forms) is added
to the lists of unaveraged equations used in the thought experiments. Thus, in addition to equa-

tions (4-75) and (4-76) we use

+ Pr 0x.* 0x. +Ot+ OXk !

and in addition to equations (4-88) and (4-89) we have

+

0X k (X2)c Pr 0x* 0x*i i
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where $+ =_ ($w -
., Pr - _ is the Prandtl number, and (Q2)w is the time-averaged normal

(q2)w / p
o_

heat transfer at the wall. The rest of the dimensionless quantities have already been defined in equa-

tions (4-77) and (4-90). Then one obtains the thermal law of the wall, the temperature-defect law, and

the temperature logarithmic law in place of equations (4-81), (4-94), and (4-102) respectively. These are

T )= T x2, Pr ,

(%+- T+)= (T/- T+)(x;),

and for an overlap region, where both the thermal law of the wall and the temperature defect law apply,

T* = 1 In y+ + C(Pr)
K1

where T + = T + is the time-averaged dimensionless temperature difference, and K 1 :- K (see

eq. (4-102)) if eh = e as in equation (4-38). Note that the Prandtl number Pr does not appear it, the

temperature-defect law because the term [1/[(x;)Pr]}_q_'+/Ox./Ox.: drops out of the dimensionless

energy equation used for the temperature-defect law when (x2)¢+ -, _. (This loss of the influence of t,her-
real conduction (or of thermal smearing) can be explained by an argument similar to that for the influ-

ence of viscosity, as given after equation (4-93).) On the other hand, Pr appears in the thermal law of

the wall because the term (1/Pr)d2_ " +/Ox.*dx.* does not drop out of the dimensionless energy equation
1 1

used for the law of the wall when +(x2) c --_ _. Finally, note that in getting the logarithmic law for the
temperature distribution we use, as obtained from equations (4-29) and (4-74)

(,I-1 15)

in place of equation (4-95), where e h is the eddy diffusivity for heat transfer. As a result of this change

is replaced by eh and/or U_ by T + in equations (4-97) to (4-102). Note that, as for equation (,1-95),

and except for very small Prandtl numbers, if one lets (x_) c --_ ¢_ there will be an extensive region where
the turbulent term is much greater than the molecular term, and where the term on the left side can be

replaced by 1. The results in this section, like those in sections 4.3.2.6 to 4.3.2.8 follow from a thought

experiment with the unaveraged continuum equations.

4.2.3.11 A calculation of fully developed convective heat transfer.---Consider next a treatment of

the fully developed heat transfer which can occur when temperature gradients exist in a flowing fluid. If,

in accordance with equation (4-38) we set eh = e, equation (4-115) becomes
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where,again,

and

Q2/1 /,(Q2)w : _ + _ dT-_ (4-116)
v) dx;

4-

(Tw - T)c_w

Pr = v

is the Prandtl number of the fluid. As for the velocity distribution (eq. (4-106)), _/v in equation (4-116)

is obtained from equation (4-104). Equation (4-116) applies to either a channel or a pipe, as does equa-

tion (4-106). However, the quantity Q2/(Q2)w in equation (4-116) is different for the two configura-
tions, although the effect of the difference on the heat-transfer coefficients is small except for liquid

metals (which are not considered here). Since we will be comparing our results mainly with experimental

heat-transfer (and mass-transfer) data for a pipe, we use Q2/(Q2)w for a pipe (ref. 7 or 9):

Qz (x2)c

+ +

(q_)w (x2)c - %
E( ]2 _ x2)_ - Cu, (_)d6. (4-I17)

The quantity (x_) c is defined as (x2) c _r_/p /v, where (xz) c is now the pipe radius, U_ is obtained

from equation (4-106) and U + is given by equation (4-114). (Compare eq. (4-117) with that obtained
for a channel by using the first and last members of eq. (4-74)).

We want to calculate the Stanton number as a function of Reynolds and Prandtl number. The

Stanton number is given by

h 1
St-= _, (4-118)

pcUa U +T +
a a

where the heat-transfer coefficient h is defined as

(q2)w
h=

T w - T_

and the dimensionless mixed-mean temperature difference T + is obtained from

(4-119)

+ --

&

c(x_)¢r, +, +_ * dx2Jo L X2)¢ - x T l

[.(x;) [(+) _]v* "¢ x2 - x2 1 dx2
JO c

(4-120)
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where U_ is calculated from equation (4-106), and T + is obtained from equations (4-116) and (4-104).
X +Finally the Reynolds number Re is given by equation (4-113). By varying the parameter ( 2)c, Stanton

number can be calculated as a function of Reynolds number and Prandtl number from these equations.

Figure 4-4 shows plots of calculated Stanton number versus Prandtl number for three Reynolds

numbers. Included for comparison are experimental data for heat and mass transfer. The mass-transfer

data are included by replacing temperatures by concentrations and molecular thermal diffusivities by

molecular diffusivities for mass transfer. The agreement of the experimental data with the solid curves

calculated by using velocity and temperature distributions from equations (4-106), (4-116), and (4-104) is
good over the entire range of variables shown.

Of some interest is the fact that the good agreement with experiment was obtained by setting the

eddy diffusivity for heat transfer (or for mass transfer) e h equal to that for momentum transfer e, as
obtained from the mixing-length theory (see eq. (4-38)). By contrast, the agreement obtained by setting

e/e h equal to the molecular Prandtl number (about 0.7 for air), as is often done, is much poorer. This is
indicated by the dashed curve in figure 4-4c. These results do not, of course, prove that e/e h : 1 at all

points in the flow, since e/e h may vary with position. They only show that the mean effective value of

e/e h is very close to 1.

4.3.2.12 Some other closure assumptions for fully developed or nearly fully developed (equilibrium)

flows.--The results in the last section utilized an approximate expression for the eddy viscosity which

was, however, based partially on exact information. Here we review briefly some earlier approaches.

A reasonable expression for the region away from walls is the yon Khrmhn similarity expression

(ref. 33). That expression is most easily obtained by assuming that, away from boundaries, the turbu-
lence at a point is a function only of conditions in the vicinity of the point, in particular, of the first and

second derivatives at the point. Then by dimensional analysis we obtain for the eddy viscosity

z K2m

0U1]

(4-121)

where K is the Khrmhn constant.

Von Khrmhn's hypothesis (eq. (4-121)) has been proposed for the region away from a wall. Close
to a wall we assume that the eddy viscosity is a function only of quantities measured relative to a wall,

U 1 and x2, and of y. The simplest assumption consistent with dimensional analysis and the require-

ment that the effect of v should become small for large x 2 is then (ref. 33)

[ {n2 ,x211e = s(UI, x2, v) ---- n2UlX2 1 - exp v J]'

(4-122)
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where n is an experimental constant (n = 0.124). Equations (4-121) and (4-122) give results for flow

and heat (or mass) transfer in tubes which are almost as good as those in figure 4-4 (see ref. 33). The use

of those equations also gives good results for the boundary layer on a flat plate (ref. 34).

By making a small modification in the derivation of equation (4-121) we can obtain an expression

for e which should be applicable to a vortex. We assume that the turbulence at a point is dependent

only on the shearing deformation rate at the point and in the vicinity of the point; that is, it is a function

of the deformation rate and its derivatives. If we exclude derivatives of the deformation rate higher than

the first we get, for a parallel flow (eq. (4-121)). However, for a circular vortex, we get

[ vv• e[dr r dr r}]2
dr_dr

(4-123)

where v is the tangential velocity and r is the radius. For a vortex flow, v = v0r0/r , where the sub-

scripts 0 refer to values at some arbitrary radius. Equation (4-123) then becomes

K2v°r° (4-124)

2

Equation (4-124) has been used profitably for turbulent vortex flows in vortex tubes (ref. 35), in astro-

physical clouds (ref. 36), and in the atmosphere (ref. 37).

Finally we mention closures based on Prandtl's mixing-length Q2 (ref. 6), where _2 is defined by

(4-125)

Prandtl assumed that {2 = Kx2, where x 2 is the distance from a wall. Van Driest (ref. 38) has modi-

fied that assumption by introducing a damping factor which reduces _2 in the region close to a wall:

(4-126)

where A is an additional experimental constant. Equation (4-126) appears to be reasonably applicable

to the regions both close to and away from a wall, as is our equation (4-104). Equation (4-104) gives, in

addition, a velocity profile which is accurate in the so-called wake region, where x 2 --, (x2) ¢ (see fig. 4-2).
Although the use of an equation which is applicable to two or more regions in a flow may be somewhat

more convenient than the use of a separate equation for each region, there is basically no reason why one

equation should apply to more than one region; the turbulence mechanism is likely different in the dif-
ferent regions.
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A word should perhaps be said about the value of the Kgrm_in constant K. If U] = Ulix2,+
x ÷( 2)c], as in figure 4-2, then a value of K = 0.4, or 2/5, (see eq. (4-105)) gives good results. On the

X-_other hand, if it is assumed that U_ = U-_(2), so that a single curve is obtained instead of the multiple

curves in figure 4-2, then K = 0.36 gives better agreement with the data (ref. 33). Finally, for a vortex

(eq. (4-124)), K seems to be close to 0.3 (ref. 35). It is not surprising that the value of K appears to be

slightly different for a vortex than for a parallel flow, since, as for all closures, the ones considered here

are approximate and correspond only partially to reality. Thus the constants in a closure scheme must

often be "fine-tuned" when the flow configuration is changed.

4.3.2.13 A treatment of moderately short highly accelerated turbulent boundary layers.- 'File last

few sections considered closure schemes for fully developed or nearly fully developed turbulent flows. We

turn now to a problem which is in some ways the opposite of those just considered: Given a fully devel-

oped or nearly fully developed turbulent flow and transverse heat transfer to which the boundary-layer

assumptions are applicable, to determine the streamwise evolution when the flow is subjected to a severe

streamwise pressure gradient. A boundary layer subjected to a severe pressure gradient can be considered

to be the same thing as a highly accelerated boundary layer. According to Bernoulli's equation, which

applies outside the boundary layer, where viscous and turbulence stresses are negligible,

dU_
1 dP = U_ (4-127)

P dx 1 dx 1

where U¢¢ is the velocity just outside the boundary layer. For a thin steady-state two-dimensional
boundary layer with constant properties and without buoyancy, equations (4-25), (4-26), and (4-21)

become respectively

0U1 0U1 1 dP 02U1 0
U l_ = -U 2_ - ___ + v__ -

0x i 0x 2 p dx I 2 0x 2
0x 2

__UlU2, (4-128)

U1 0T U2 dT 02T O
Ox1 Ox_ 2 Ox2

Ox 2

(4-12o)

and

OU2 OU1
= ___, (4-130)

0x 2 0x 1

where x I and x 2 are respectively in the direction along and normal to the wall. The pressure gradient

is written as a total derivative dP/dx I because P is not a function of x z for a thin boundary layer.
Equations (4-128) to (4-130) apply to a boundary layer even when the flow is along a curved wall

(ref. 39).

In order to solve equations (4-128) to (4-130) to obtain the evolution of V 1 and T, ulu 2 and

ru-'-'_ must be known at each point in the flow. The experiments of Blackwelder and Kovasznay (ref. 40)

suggest that although severe pressure gradients caused the mean flow in those experiments to change con-

siderably along streamlines_ the Reynolds stresses, at least in the important intermediate region of wall
distances, were relatively unaffected. This leads us to the hypothesis of frozen Reynolds stresses and
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turbulent heat transfer along streamlines in a moderately short highly accelerated turbulent boundary

layer. We gave theoretical arguments for that hypothesis in references 41 and 42, where we showed that

it gives good agreement with experiment when applied to equations (4-128) to (4-130). Launder (ref. 43)

had earlier used the concept of a frozen Reynolds stress, but in an approximate integral approach to the

boundary layer rather than in the solution of the partial differential equations (4-128) and (4-130).

Changes along streamlines, if not zero, should be smaller than say changes at constant x2, since flow
along streamlines tends to involve the same fluid or eddies at various streamwise points. In applying the

hypothesis of frozen ulu 2 and ru-_ along streamlines it is convenient to transform equations (4-128)

to (4-130) from (xl, x2) to (xl, ¢) coordinates (yon Mises coordinates), where the stream function ¢ is
given by

so that

0¢ : _U2, 0_¢¢ : UI ' (4-131)

OxI Ox2

l} (} f:/ {0}0 _- 0 - "2( ix,' : x,
U 1 , (4-132)

where the subscripts are quantities held constant. Equations (4-128) to )4-130) then become

(0U1] 1 dP 1 02U21 0ulu2

/ = - + ..,-- - u1--
and

0T = a U, 0¢
¢

(4-133)

(4-134)

where the subscripts ¢ indicate changes along a streamline (at constant ¢). By virtue of equa-
tion (4-131), equations (4-133) and (4-134) satisfy continuity automatically.

The equations for the evolution of ulu 2" and of ru'_ will be obtained later in this chapter (see
eqs. (4-140) and (4-141)). For our purpose the important point is that those equations do not contain

dP/dxl, in contrast to equation (4-133) for the evolution of U I or to equation (4-127) for the evolution

of U_, the latter of which is a special case of equation (4-133). Taking that fact into account, as well as

the discussion in the paragraph preceding equation (4-131), one would expect, for large dP/dxl, that there

would be large gradients of U¢o or of U 1 along streamlines without correspondingly large streamwise

gradients of UlU 2 and 7_2. Then if the boundary layer is moderately short, the hypothesis that the

turbulent shear stress and transverse heat transfer are frozen at their initial values as one proceeds along

a streamline in a flow with large streamwise gradients of Uoo or P should be a good approximation.

Rescaling the variables in equations (4-133) and (4-134) so as to convert them to dimensionless

form, and introducing the frozen turbulent stress/heat-transfer hypothesis give
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and

where

A = dP +
2 ( (_X1J¢ dx 1 2 _2

- U 1

ui {xl - x0) ¢ __ ¢,-+ U i U 0 --+ Xl, -
G ' v v

v dP dP (u--_)0
-_ _, _ -_ {_-_)o,

pU_ dxl dx 1 Uo2

Tw- T (7-G}0
-_ T, -_ (7_)0,

(Tw) 0 - To. [(Tw)0_ To,]U0

(4-135)

(4-136)

(4-137)

and the arrow -+ means "has been replaced by." The quantity x 0 is the value of x 1 at the initial

station, U0 is the velocity outside the boundary layer at the initial station, (Tw) 0 is the wall tempera-
ture at the initial station, Too is the constant temperature outside the thermal boundary layer, and Pr

is the Prandtl number. The quantities (u-_2)0 and (_2)0 are, respectively, the values of UlU----_ and

ru 2 on the same streamline as UlU2 and ru 2 but at the initial station.

The frozen turbulent stress/heat-transfer hypothesis can be tested by numerically integrating equa-

tions (4-135) and (4-136) along streamlines (at constant _b) and comparing the results with experiments

for the same conditions. Upstream of the regions of severe streamwise pressure gradients the pressure
gradients were essentially zero.

Velocity profiles (U1/Uoo against _b/v) are plotted and compared with experiment in figure 4-5.
(Note the shifted vertical scales.) In all cases the effect of the pressure gradient and the total normal

strain parameter UJU 0 is to flatten the profiles. The agreement between theory and experiment is
considered good.

Semi-logarithmic plots of U1/('r"w/p) 1/2 against (rw/p)l/2x2/i/(law-of-the-wall plots) are given in

figure 4-6. These profiles show the inner region of the boundary layer much better than does figure 4-5.

The shear stress T w at the wall for the theoretical curves was obtained from the slope of the velocity

profile at the wall by using points very close to the wall ((rw/p)U2xJv << 1). Points very close to the
wall were necessary because of the nonlinearity of the profile close to the wall in the presence of a severe

pressure gradient. It might be pointed out that this nonlinearity makes the experimental determination

of the shear stress at the wall extremely difficult. Both theory and experiment indicate that the original

logarithmic and wake regions are destroyed by the pressure-gradient and normal-strain effects, although a

new logarithmic layer of smaller slope seems to form eventually. Also, the thickness of the sublayer

approximately doubles, indicating an apparent "relaminarization," as observed experimentally by many
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investigators. However, it is not a true relaminarization since, at least in the theory, ulu 2 is constant
along streamlines. The agreement between theory and experiment appears to be quite good. For values

of U_o/U 0 larger than those shown, the approximation of a frozen Reynolds stress apparently begins to
break down.

In order to see how sensitive the development of the mean profile is to the Reynolds shear stress,

results were calculated for UlU2 = 0 and are shown dashed in figures 4-5(b) and 4-7. The effect of UlU2

on the profiles in figure 4-5(b) is slight. The law-of-the-wall plots in figure 4-7, on the other hand, show

a significant quantitative effect of UlU 2 on the profiles, but qualitatively the curves for UlU 2 : 0 and

UlU 2 _' 0 are much the same. In both cases the original logarithmic and wake regions are destroyed and

the sublayer is thickened. The difference between the indicated quantitative effects of ulu 2 on the pro-

files in figures 4-5(b) and 4-7 is evidently due to the difference in scales and in scaling parameters in the

two figures.

Figure 4-8 shows, for a large value of the pressure-gradient parameter, the contributions of

various terms in equation (4-128) to the rate of change of the nondimensional mean kinetic energy

(1/2)0(U1/V0)2/0(xlV0/v). (The energy in the transverse velocity component is negligible for a bound-

ary layer.) The contribution of the Reynolds stress term is very large in a narrow region near the wail.

However, that tends to be offset by the viscous contribution. Comparison of the curves for ulu 2 = 0

and UlU_ _ 0 shows that the viscous contribution adjusts its value so as to offset the effect of the
Reynolds stress. The viscous term is not zero at the wall but balances the pressure-gradient term so that

U 1 can remain zero at the wall. Thus, the present velocity profile, in contrast to the case of zero pres-

sure gradient, is nonlinear at the wall. (If it were linear the viscous term in equation (4-128) would be
zero at the wall.)

The pressure-gradient term is independent of wall distance and, for the case shown in figure 4-8,

becomes dominant for (rw/P)l/2x2/v > 40. Thus, the destruction of the logarithmic and wake regions is
due mainly to the pressure-gradient term, rather than to a change in the structure of the turbulence

(although some change in structure may occur (ref. 45)). Also, the thickening of the sublayer is mostly,

although not entirely, due to the pressure-gradient contribution, since as mentioned, viscous effects tend

to offset the Reynolds stress contribution.

The results in figure 4-8 are, of course, for a large pressure-gradient parameter. For regions of

lower pressure gradient, the Reynolds stress will have a greater effect, as shown in figure 4-7. Also, the

velocity profile at any position depends on the whole distribution of pressure gradients up to that posi-

tion; that is, U 1 is a functional of dP/dxl, or

(4-138)

where 0 < _ < x 1. Thus, there is a quantitative (but not a qualitative) effect of ulu 2 on the velocity
profile, even at those positions where the pressure-gradient parameter is large.

The analysis can be easily extended to include mass injection at the wall by transforming equa-

tion (4-135) from (xl, ¢) to (Xl, ¢') coordinates, where ¢' = ¢ - Cw, and Cw is the stream function

at the wall. The latter will vary with x 1 in accordance with equation (4-131). Equation (4-135), when
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written in (xl, ¢') coordinates, has the additional term -(1/2)(U2)w0U_/0 ¢' on the right side, where
(U2) w is the dimensionless normal velocity at the wall, and where, as in equation (4-135), all quantities

have been nondimensionalized by U0 and v (see eq. (4-137)). As before, we use the simplification that

UlU 2 remains frozen as it is convected along streamlines (along lines of constant ¢, not constant _b').
The injected fluid is assumed to be turbulence-free.

To show the effectof mass injectionon a boundary layerwith severepressuregradients,mass

injectionwas added inthe theoreticalcalculationsin figure4-6. For positivemass injectionfigure4-9

shows that the normal flow quicklyraisesthe Ul/(rw/p)I/2 curve,particularlyinthe wake region,after

which the favorablepressuregradientlowersand flattensthe curve. The resultingcurve stillliesabove

the initialprofile.For negativeinjection,the normal flowand pressuregradientlowerand flattenthe

initialprofile.These trendsare similarto thoseobserved inthe experimentsofJulien,Kays, and Moffat

(ref. 46).

All of the results so far were for favorable pressure gradients, but the analysis should apply as well

to severe unfavorable gradients. Figure 4-10 shows a comparison between theory and experiment for the

results of Kline et al. (ref. 45) for a severe unfavorable pressure gradient (their fig. 9(a)). The results

indicate that the adverse pressure gradients produce an exaggerated wake region, but that the logarithmic

and sublayer regions are relatively unaffected. The agreement between theory and experiment is good. It

might be mentioned that the results for adverse pressure gradients were more sensitive to the ulu 2 dis-

tribution than were those for favorable gradients. In particular, when UlU2' was taken as zero, sepa-

ration occurred upstream for the run shown in figure 4-10 for Uoo/U 0 = 0.92. Thus the presence of
turbulence appears to delay separation. This is evidently because the Reynolds stress term in equa-

tion (4-128) is positive close to the wall and thus tends to increase U 1 in that region.

Figure 4-11 shows theoretical Stanton-number and skin-friction-coefficient variations with dimen-

sionless longitudinal distance for run 12 from reference 47. The shear stress and heat transfer at the wall

for the theoretical curves were obtained from the slopes of the velocity and temperature profiles at the
r===._====._===._

wall by using points very close to the wall _('_w/P )x_/u<<l). Also included in the plot are experimental

values for Uoo/U 0. Initial conditions were taken at x 0 - 4.32 ft. The difference between the Stanton
number and skin-friction-coefficient variations is rather striking and indicates that Reynolds analogy (see,

e.g., ref. 33) does not apply in regions of severe pressure gradients. This difference is also indicated in the
experimental results of references 40 and 47.

The effect of favorable pressure gradients on velocity and temperature distributions is illustrated in

figure 4-12, where theoretical values of T + and U_ are plotted against x_ for a low and a high value
of pressure-gradient parameter K --- (u/pV_)dP/dx r The results are again for run 12 from reference 47.

The effect of the pressure gradient on the T + profile tends to be opposite to that on the U_ profile.

Whereas the pressure gradient flattens the U_ profile in the outer region of the boundary layer, it
steepens the T + profile in that region. The same trends have been observed experimentally in refer-

ences 44 and 48. The difference between the velocity and temperature results (or the skin friction and
heat transfer results) is evidently due to the fact that the equation for the evolution of the mean velocity

contains a pressure-gradient term (eq. (4-128)) whereas that for the mean temperature does not (eq. (129)).

Although the temperature equation does not contain a pressure gradient term, the pressure gradient can

still affect the temperature through the mean velocity.

A comparison between theory and experiment for the evolution of Stanton number in severe
favorable pressure gradients is presented in figure 4-13 for three values of maximum pressure-gradient

parameter Km. The value of x 0 (the initial station for each run was taken at the point where the local
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pressure-gradient parameter K L starts to increase rapidly). For the smaller values of K m good agree-

ment between theory and experiment is indicated for values of U_/U 0 which are not too large. It

appears that the range of values of UcJU 0 for which the theory applies increases as the pressure-

gradient or acceleration parameter increases. For values of U0(x 1 - x0)/v (or of Uoc/U0) greater than

those shown in figure 4-13, the theory appears to break down because the total streamwise strain becomes

too great and/or the local pressure-gradient parameter K L becomes too small.

Figure 4-13 also shows Stanton numbers calculated for turbulent initial velocity and temperature

profiles, but for ru 2 : UlU 2 =- 0. It is seen that the turbulent stresses and fluxes have a very large
effect on the evolution of the Stanton number. The large effect of turbulence on Stanton number perhaps

raises questions about calling regions such as those shown in figure 4-13 "relaminarization regions,"

although at the large values of K m and U0(x 1 - x0)/v there is some tendency for the zero-turbulence

curves to approach those for turbulence. The effects of turbulence on the velocity and temperature dis-

tributions are also considerable, although the general trends without turbulence are similar to those in

figure 4-12.

It should, of course, be remembered that, as is the case for U 1 (eq. (4-138)), Stanton number, as

well as Cf, and T at any longitudinal position depend on the whole distribution of pressure gradients up

to that position. That is, Stanton number, for instance, is a functional of dP/dxl, or

st = stldP(0],
[dxl

(4-139)

where0 < _x 1.

4.3.3 One-Point Correlation Equations

Sections 4.3.1 and 4.3.2 considered the equation for the evolution of the mean flow (eq. (4-25)) and

that for the mean temperature (eq. (4-26)). Those were obtained by averaging the equations for the

instantaneous velocity and temperature (eqs. (4-11) and (4-12)) after applying Reynolds decomposition,

and contained the important but undetermined turbulent stress tensor -PUiU j and turbulent heat trans-

fer vector pcuir. This was our first encounter with the closure problem, and sections 4.3.2 to 4.3.2.13
considered some simple closure schemes.

One can construct equations for the evolution of the undetermined quantities uiu i in equations (4-25)

and (4-27) from equation (4-22) for gi : 0 and the following similar equation for the component uj:

0uj = _ _k 1 0a 02uj(UJuk) -- P_jj -_ POX kOx k
-- Uk

OUj Ouj 0
- U k_ _- __uju k .

Ox k c:_xk o_ k

Note once again that a e drops out the equations of motion for gi = 0 by virtue of the equation follow-

ing equation (3-22). Next multiply equation (4-22) by uj and the above equation for uj by ui, add the
two equations, and average. This gives, using continuity (eq. (4-21)),
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(_OUi OUJ/ U _ _ a lfO Z_--_i ]u,u = +UiUk --uiu u +
[ OXk _kk J-- k Ox k OaXk p [ O_Xi Oxj )

-q- //__
] Oui 0uj

0xl 0xt o 0xi 0xj) 0x t 0x t

(4-140)

Similarly, multiplying equation (4-22) by r, equation (4-23) by ui, adding the two equations, and
averaging, give

't

_kk/J O-- 0 1 0--
._ + UiUk OT - Uk_Uir - _ruiu k - ___or

Ox k Ox k P Ox i

1 37 0_ui 0_r
+ _e__ + vr__ + au i

P Ox i Ox k Ox k Ox k Ox k

(4-141)

where continuity is again used and buoyancy is neglected. Equations (4-140) and (4-141) are known as

moment or correlation equations. Setting j = i in equation (4-140) and using continuity, we get, for the
rate of change of the kinetic energy per unit mass,

(_)--OUi _k(_ ) 0 /uiu'---_] 1 a (b_k)0 = _ UiUk _ Uk _
0"-t 0X k _kk[-"2-UkJ - p 0xk

+u__ -u____"
_t 0x t 0x t 0x t

(4-142)

As in equations (4-25) to (4-27), barred quantities in equations (4-140) to (4-142) which contain lower-
case letters are turbulent quantities.

The one-point correlation equations (4-140) and (4-141) give expressions for the rate of change of

uiu j and uir which might be used in conjunction with equations (4-25) to (4-27). But the situation

with respect to closure is now worse than before. Whereas without equations (4-140) and (4-141) we had

only to determine uiu j and uir , with it we have to determine quantities like hiUjUk, rUiUk, auj, at,

O o_nj/o_Xi, (0ui/¢3xt) (O_lj/o_xt), _, and r 02ui/O_Xk0Xk . One might use equation (4-24) to obtain

the pressure correlations, but that would only introduce more unknowns. However, equations (4-140)
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to (4-142) are very useful for studying the processes in turbulence, in that most of the terms have clear

physical meanings. Moreover, one may be able to calculate terms in those equations from numerical

solutions of the unaveraged equations.

An additional one-point equation can be obtained by multiplying equation (4-23) by r, averaging,

and again neglecting buoyancy. This gives

__0_-'_ = _2ru---_ 0T _ Uk___0 _-__ 0 r2uk÷ a__ 02r2 _ 2a0r __0r , (4-143)

Ot _x k _x k _x k Ox k _x k Ox k O_Xk

m

where r 2 is the variance of the temperature fluctuation.

4.3.3.1 PhysicM interpretation of terms in one-point equations.--Consider first equations (4-140)

and (4-142), since physically meaningful interpretations of all the terms in those equations can be given.

As in the case of equation (3-19) it is helpful, for purposes of interpretation, to multiply the terms in

equations (4-140) and (4-142) through by p and by a volume element dxldxzdx 3. Then the term on the

left side of equation (4-140) or (4-142) gives the time rate of change of puiuj, or of the kinetic energy

puiui/2, within the element. This rate of change is contributed to by the terms on the right sides of the

equations. The first of those terms is equal to the net work done on the element by turbulent stresses

acting in conjunction with mean-velocity gradients. It is therefore called a turbulence production term; it

equals the rate of production of puiu i or of puTui/2 within the volume element by work done on tile

element. A somewhat abbreviated interpretation suggested by the form of the term, which is often given,

is that it represents work done on the turbulent stress PUiU j by the mean-velocity gradient.

The next term in each of the equations describes the convection or net flow of turbulence or turbu-

lent energy into a volume element by the mean velocity U k. It moves the turbulence bodily, rather than

doing work on it by deforming it, as in the case of the production term. It vanishes when either U k is

zero (no mean flow) or when the turbulence is homogeneous [u-_j a uiuj(xk) ] . In the latter case there is

no accumulation of turbulence within a volume element, even with a mean flow.

The next three terms in equation (4-140) and in equation (4-142) also vanish for homogeneous tur-

bulence. Since they do not contain the mean velocity they do not convect the turbulence bodily or do

work on it. Therefore, we interpret them as diffusion terms which diffuse net turbulence from one part of

the turbulent field to another by virtue of its inhomogeneity. The pressure-velocity-gradient terms in

equation (4-140) drop out of the contracted equation (4-142) because of continuity (eq. (4-21)). There-

fore, they give zero contribution to the rate of change of the total energy uiui/2 , but they can distribute the

2 (no sum on i). The last term in equations (4-140)energy among the three directional components u(i)/2

and (4-142) is the viscous dissipation term, which dissipates turbulence by the presence of fluctuating

velocity gradients.

Consider next, equation (4-141) which, on multiplication by pc and the volume element dx I dx 2 dx3,

gives the time rate of change of pcuir within the element. The first term on the right side gives the

production of turbulent heat transfer pcuir by the interaction of ru k with the mean velocity gradient and

by the interaction of uiu k with the mean temperature gradient. The next term gives the net flow of pcuir

into the volume element by convection. It changes pcuir within the element by moving that quantity
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bodily. The term vanishes for homogeneous turbulence. The next two terms in equation (4-141) also

vanish for homogeneous turbulence, but since they do not contain the mean velocity, they do not convect

pcuir bodily or produce pc_ii r. Therefore, as in the analogous terms in equation (4-140), we interpret them

as diffusion terms which diffuse a turbulence quantity from one part of the turbulence field to another by

virtue of its inhomogeneity. The next term changes pcuir by the interaction of the pressure fluctuation

a with the temperature-fluctuation gradient. The last two terms change pcuir by molecular action.

For a = u (for a Prandtl number of 1) they can be interpreted by writing them as u 02_iir/ffx_ o_x_

- 2u Oui/ct_x_ Or/fJx{. Comparing these terms with analogous terms in equation (4-140), we interpret the

first as a diffusion term and the second as a dissipation term.

J

Finally, consider the equation for the evolution of the temperature variance 72 (eq. (4-143)). The

terms on the right side of that equation are similar to terms already considered in the other evolution

equations. They are, respectively, a production term, a convection term, two diffusion terms which dif-

fuse 72 by virtue of the inhomogeneity of the turbulence field, and a dissipation term which dissipates

r 2 by fluctuating temperature gradients.

4.3.3.2 Some direct numerical simulations of terms in one-point moment, equations.--In section 4.3.3

we obtained averaged one-point moment (or correlation) equations which give the time-evolution of quantities

such as uiu j, uir , and uiu i. Also, in the last section we gave interpretations of the terms in those equa-

tions. However, because of the closure problem which arises in connection with averaged equations, par-

ticularly with one-point moment equations, we have not been able to solve those equations or calculate

terms. Those terms have, however, been calculated by numerical solution of the unaveraged equations

(eqs. (4-11.) to (4-13) (or by eqs. (4-22) to (4-24) together with eqs. (4-25) to (4-27).)

The cases to be considered here will be concerned with the evolution of the mean turbulent kinetic

energy according to equation (4-142). The averaged values in that equation will vary only in the direc-

tion x2, one of the directions normal to the mean velocity U 1. In that case equation (4-142) becomes

Mansour, Kim, and Moin (ref. 49) have calculated the terms in equation (4-144) from a numerical

solution of the unaveraged Navier-Stokes equations for a steady fully developed turbulent channel flow.

The boundary condition was u i = 0 at the walls. The results, which correspond to the numerical solu-

tion plotted in figure 4-2, are shown in figure 4-14. The corresponding turbulence kinetic energy profile is

plotted in figure 4-15. Since the turbulence is steady-state, the sum of the terms on the right side of

equation (4-144) is zero.

The production term -ulu 2 dU1/dx2, whose form shows that turbulent energy is produced by work

done on the Reynolds shear stress by the mean velocity gradient, is largest in the region close to the wall and

peaks at an x_ of about 12. According to figure 4-2, the mean velocity profile at that point is just

beginning to deviate appreciably from a laminar (U[ = x_) profile. Note that the production term
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-ulu 2 dU1/dx 2 in figure 4-14 is positive as it should be, since according to the argument in section 4.3.1.1

and figure 4-1_ when dU1/dx 2 is positive ulu 2 is negative, and vise versa. Similarly the dissipation

term -v 0uk/_x ! 0Uk/0X _ is always negative, because it is the negative of the sum of the squares of

velocity gradients. The remaining three terms in equation (4-144), and which are plotted in figure 4-14,

are diffusion terms. They are the kinetic-energy diffusion term 0U2UkUk/2 / 0x2, the viscous diffusion

term v 02_/0x22, and the pressure diffusion term -(0b-_2 / Ox2)/p. The plots of those terms show

that all three of them are positive near x2 -- 0, where a large energy sink occurs because of the boundary

condition u i --- 0 at x 2 : 0 (see fig. 4-15). Farther away from the wall they become negative. Thus

they remove turbulent energy from the region where the energy is large and deposit it where the energy is

smaller. All of the diffusion terms therefore tend to make the turbulence more homogeneous. Far from

the wall there is a region of small positive dU2UkUk/2/dx 2, apparently because the energy in that region

decreases gradually with increasing x 2.

A comparison of the turbulence diffusion processes with spectral transfer processes (to be discussed

in the next chapter) and the directional-transfer processes arising from the pressure velocity-gradient cor-

relations (see sect. 4.3.3.1) is instructive. The spectral-transfer processes remove energy from wave-

number (or eddy size) regions where the energy is large and deposit it in regions of umaller energy. The

directional-transfer processes remove energy from large-energy directional components and deposit it in a

directional component (or components) where the energy is smaller. The turbulence diffusion processes,

as shown here, remove energy from regions of space where the energy is large and deposit it in regions of

smaller energy. The spectral transfer, directional transfer, and turbulence diffusion processes tend,

respectively, to make the turbulence more uniform in wavenumber space, more isotropic, and more homo-

geneous in physical space.

Terms in equation (4-144) have also been calculated for a developing turbulent free shear layer,

where the mean quantities were functions only of x2 and time (ref. 50). The terms were calculated from

a numerical solution of the unaveraged equations, where the boundary conditions were periodic. Results

were similar to those just considered for a fully developed channel flow, insofar as the kinetic-energy and

pressure-diffusion terms diffused turbulence kinetic energy from regions where the energy was high to

regions where it was lower. As expected (see the discussion for the channel flow) the production term

was positive. The viscous dissipation and the viscous diffusion terms were, however, negligibly small,

unlike those terms for the channel. That was apparently because the presence of walls in the channel

produced larger mean gradients there than those in the free shear layer.

4.3.4 Two-Point Correlation Equations

As shown in section 4.3.3 the use of one-point correlation or moment equations in conjunction with

the equations for the mean flow causes the number of unknowns to go up faster than the number of avail-

able equations, so that the closure problem_ in effect, gets worse. This leads one to consider the use of

two-point equations, where one might be able to at least eliminate terms containing instantaneous grad-

ients, such as a 0uj/0x i and 0ui/0xf Ouj/_. In that case the use of higher-order equations might be

expected to increase the number of unknowns at the same rate as the number of available equations.

Since an assumption for still undetermined higher-order quantities (e.g., triple correlations) might be

expected to affect the flow to a lesser extent than an assumption for lower-order quantities (e.g., uiu j),

there might be some advantage in this procedure. Moreover the use of two-point equations enables us to

consider the important spectral-transfer problem of turbulence, as we will see in the next chapter.
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Beforeobtaining the two-point correlation equations, consider the structure of the two-point cor-

relations. Some of those correlations have been obtained by Kim, Moin, and Moser (ref. 17) in a numer-

ical solution of the unaveraged Navier-Stokes equations and are plotted in figure 4-16. As the separation

r k between the defining points increases, the correlation between the velocities at those points goes to

zero (as r k ---, _). This might be considered a consequence of the mixing property of turbulence; although

mixing is generally associated with temporal separation (sect. 4.1.1), the effects of temporal and spatial

separations appear to be similar. In connection with the spanwise separations, note that the correlations

go negative before becoming asymptotically zero as r 2 increases, in contrast to the correlations with

point separation in the streamwise direction. More will be said about that phenomenon in the next

chapter, where it will be predicted theoretically.

In this section we will consider only two-point equations obtained from the Navier-Stokes equations

and will neglect heat-transfer and buoyancy effects. Then equation (4-22) for u i at a point P and a
I

similar equation for uj at a point P' can be written as

Oui OUi Oui 0 O I Oa d2ui (4-145)
__ + u k_ + U k_ + _(UiUk) - __uiu k ..... ___ _- v__
0t Oxk Ox k Oxk Ox k p 0x i Ox_ dx k

and

' ,ou; Ou; 0 0 1oo' ,_u; (4-_46)Ouj -{-Uk-- q- Uk'-- + --(u; ul_)__--u; ul__ . ___ q- /___
at Oxl_ Oxk' 0Xl_ oXl_ p dxj' OXl_OXl_

Multiplying equation (4-145) by uj and equation (4-146) by ui, adding, taking averages, using the fact
that quantities at one point are independent of the position of the other point, and introducing the new

variables r k_xl_- x k and (Xk) n_nxl_÷ (! - n)x k (0 <n < l, seefig. 4-17), resuits in

OUi OUi' O ,
O _ + UkU; - + UiUk_ q_ (Uk _ _ Uk ) uiu j + [(1 - n) U k + nUkr]-----_ o- '

19""t Ox k o_ k _ O(Xk) n uiuj

+ l[__L__ouj---_+ ___o_0u-T]
P O(Xi)n O(Xj)n

+ O [nuiu;ul _ -F (1 + n) uiuku;] -_- _kk (uiuj uk - UiUkUj'-_a(xOn

1[ O a u---_l+ (1- n)O____uio,- c)ui---_ _ c3 -_-_; ]: ? n O(Xi)--..._ O(XJ )n OrU OrZ

+ (1 - 2n + 2n 2) v
- , o2_iu;

O2uiuj - 2(1 - 2n) v

O(Xk) n O(Xk)n O(Xk)n Ork

+ 2v_

_k t:)rk

(4-147)
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wherethefollowingtransformationswereused:

0 0 0
:(1 - .)__- __,

OXk O(Xk) n Ork

o o d
__ = n__ + __,
O_k_ O(Xk) n Ork

+ °_ -- (1 - 2n + 2n 2) _ - 2(1 - 2n) _ -_ 2 °_

OXk OXk OXl_ OXl_ O(Xk)n O(Xk)n (Xk)n Ork Ork Or k

To obtain the general two-point equations for the pressure-velocity correlations, take tile divergence

of equations (4-145) and (4-146) and use the continuity equation. Thus, from equation (4-146), one obtains

t e t _----t t

i _o' = _20Uk au; O2ujuk O2uju_ (4-Hs)

Multiplying by

gives

_[n 2 02_i°'
O(Xj)n c)(Xj)n

ui, taking averages, and introducing the variables r k and (Xk)n, as in equation (,1-147),

+ 2n
02ui o' 02u--y] OUiI OUiUl_ OUiUl_

+ __ = -2__ n__ + __

O(xj) n Orj &j Orj J Oxk' O(xj) n Orj

(4-149)

2 02ui---u;uk _ 02t_iUSUk t 02u---iu;Ul_ 02uiuj'uk _
-n -n -n -

O(xj )n O(Xk)n O(xj )n Ork O(Xk) n _rj Orj Ork

Similarly, from equation (4-145),

P

- 2(1- n)
(1 - n)2o(Xi)nO(Xi)n O(Xi)nOri + _] OUi[ OUkU; OUkU;

:-2__ (l-n)
OXk O(xi). Ori

(1 n) 2 i_ O2u'-iUkUjt- - + (1 - n) + (t - n)
O(Xi) n O(Xk)n 0(Xi)n Ork

_?u--iUk Uj' 0_2Ui---_U;

O(Xk)n Ori Ori (_k
(4-150)

The equation for the mean velocity (eq. (4°25)) with buoyancy neglected) is

OUi OUi 10P 0 ( OUi ]
+ U k : --___ + __/u__ - uiu kJOt Oxk p Ox i Oxk [ Ox k

(4-151)
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Equations(4-147),(4-149),and (4-150)constitutethe two-pointcorrelationequationsfor inhomo-
geneousturbulencewith meanvelocitygradients.A possiblesolutionfor theseequationsis that all the
correlationsarezero. In that caseno turbulenceexists,andtheflow is laminar. Wearemainly inter-
estedherein nontrivial turbulent solutions.

Thetermson the right sideof thePoisson equations (4-149) and (4-150) are source terms associ-

ated with the mean velocity and triple correlations. Most of the terms in equations (4-147) are similar to

terms in the one-point equation (4-140). Thus equation (4-147) contains turbulence-production, convec-

tion, viscous, and diffusion terms. The sum of the pressure-velocity correlation terms on the right side of

the equation transfers energy among directional components. That can be seen by using the relations follow-

ing equation (4-147) (the first for Ouia' / ¢3rj and the second for da-_j'/_i, and using continuity, since the

sum of the terms is zero for i = j; the terms give zero contribution to the rate of change of energy u_./2,

but they can transfer energy among directional components. The remaining terms in equation (4-147),

0(uiujUk- UiUkU/)/0 kand (Uk' Uk)- C3uiuj / 0rk, are new terms which do not have counterparts in

the one-point equations. One may interpret them by converting equation (4-147) to spectral form by tak-

ing its Fourier transform. We will postpone doing that until the next chapter, where the spectral form of

the equations will be discussed. Note that no averaged quantities containing instantaneous gradients

appear in those equations, as they do in the one-point equations, so that the number of unknowns, in

comparison with the number of available equations, is reduced. However, the two-point correlation equa-

tions, together with the equation for the mean velocity (eq. (4-151)) and the continuity equation (eq. (4-21))

still do not form a determinate set for turbulent flow because of the unknown triple correlations.

If the turbulence is weak (low Reynolds number), and/or if the mean velocity gradients are gen-

erally very large, it may be possible to neglect terms containing triple correlations. Higher Reynolds

numbers might be considered by constructing general three-and four-point equations. In each case the set

of equations would be made determinate by neglecting terms containing the highest-order correlations.

However, even for the case of a fully developed flow at low Reynolds number, the difficulties of solution

are extremely great. For that reason modelers of inhomogeneous turbulence have generally preferred to

use the one-point equations (see e.g., refs. 51 and 52). 4

Still, it appears that the present scheme should, formally, constitute a solution to the turbulent

shear-flow problem. But the direct numerical solution of the unaveraged equations, as in references 17,

49, and 50, may be simpler. One can, however, get an approximate solution for sustained inhomogeneous

turbulence and study, to some extent, the sustaining mechanism (ref. 53).

Turbulence is essentially a nonlinear phenomenon. 5 The nonlinear character of the two-point correl-

ation equations (4-147), (4-149), and (4-150), even when the triple correlation terms are neglected, is made

evident when the mean velocities in those equations are eliminated by introducing equation (4-151) into

them. A simplified problem is considered, where the mean velocity is in the xl-direction and mean quan-

tities are steady and can change only in the x2-direction (ref. 53). Then if the mean velocity is elimi-

nated by equation (4-151) and the turbulence is weak enough (and/or the mean velocity gradients are

generally large enough) for triple-correlation terms to be neglected, the set of simultaneous correlation

4The two-point equations can, of course be profitably used for statistically homogeneous turbulence,

as in the next chapter.

5The action in turbulence is somewhat similar to that of a clock, a violin bow, or an electronic

oscillator in that in each of these a steady flow of energy is converted into oscillating energy by a
nonlinear mechanism.
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equationswhichmust beconsideredconsistsof four nonlinearpartial differentialequationsin four inde-
pendentand fourdependentvariables.Although theseequationsmightappearto be toocomplicatedto
beof use,someresultscanbeobtainedby expandingthemin powerseriesin eachof thespacevariables
to obtainalgebraicexpressionsfor the correlations,someof whicharenonlinear(quadratic). Thesolu-
tionssoobtainedwill beaccurateonly for smallvaluesof thespacevariables.

The reductionof the partial differential equations to a set of algebraic equations, some of which

contain quadratic terms, shows the importance of the nonlinear terms in the original equations. The

quadratic terms in the algebraic equations come, of course, from the nonlinear terms in tile differential

equations. If those terms were absent, the algebraic equations would all be linear and homogeneous (no

constant terms), since the original equations contained no constant terms. [n that case the only solution

would be that all the turbulence correlations are zero, so that the flow would be laminar. On tile other

hand, in the presence of nonlinear terms the system of algebraic equations is quadratic, so that nonzero

steady-state turbulence correlations can exist (ref. 53).

Reference 53 also shows the importance of the pressure-velocity correlations in sustaining turbu-

lence. The nonlinear production term is absent in the equation for u_-_' (i :-- j --- 2 in eq. (4-147)), since

U i -- _ilU1 in our problem. Thus the energy for sustaining u2u 2' must be transferred from the other

components of uiu j. The equations for the other components do, of course, contain nonlinear production

terms, and energy can be transferred among the directional components by the pressure-velocity correla-

tions (see discussion following eq. (4-151)).

The set of algebraic equations obtained by expanding the correlation equations in power series in

the independent variables has been reduced to a single quadratic equation

where

(ulna)° e( )0
t, 2 pv 2

N c is the critical value of N (at which UlU 2' --- 0), the subscript 0 designates the point in x2, r k space

about which the series expansions are made, r is the shear stress, which is uniform in the present problem,

Q is a measure of the scale of the turbulence, and a is a constant. Equation (4-152) might be used to

estimate the variation of ulu2 with r and Q, preferably over a limited range; otherwise a might not

be constant. For values of N below the critical value the correlation changes sign, according to equa-

tion (4-152). In that case one should use the no-turbulence solution of equations (4-147) and (4-149)

to (4-151). Note that the no-turbulence solution is valid when N is above its critical value as well as

when it is below it. Thus the fluid could be either turbulent or nonturbulent when N is above N c.

In order to make a rough comparison of our results with experiment we can recast equation (4-152)

so as to obtain an approximate expression for the friction factor for low Reynolds-number fully developed

pipe flow. Actually, equation (4-152) is more nearly applicable to Couette flow than to pipe flow; how-

ever, because of the similarity of trends in pipe and Couette flows and the availability of experimental

data for transition pipe flow, the comparison will be made with pipe-flow data. The approximate equa-

tion obtained in reference 53 is
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where f -- 2_w/(PU2a ) is the friction factor, Re := U a D/u, U a is the averaged pipe velocity, D is the

pipe diameter, Re c is the critical Reynolds number, and 13 is considered constant. For Re :: Rec,

f -= 16/Rec, which is the value of f for laminar flow at Re c.

Equation (4-153) and the solution for laminar flow, together with experinlental data from refer-

ence 54, are plotted in figgure 4-18. The transition Reynolds number Re¢ was taken as 2200, and B
was set equal to 0.21×10 . With these values for Re c and B, equation (4-143) is in reasonable agree-

ment with the data for the turbulent region up to a Reynolds number of about 5500. The deviation of

the curve from the data at higher Reynolds numbers is probably caused mainly by the neglect of triple

correlations. The laminar solution is, of course, part of the present solution, since the case of no turbu-

lence satisfies the correlation equations. For Re < Re c the laminar solution is appropriate because tile

turbulent solution goes below it and thus becomes unphysical.

4.4 REMARKS

We began this chapter by considering kinds of averages and their properties, together with some

notions of randomness from ergodie theory. Next, averaging was applied to the continuum equations

derived in the last chapter. It was noted that when the equations are averaged, random chaotically fluc-

tuating variables are replaced by variables which change in a smoother fashion, ftowever, the closure

problem then arises. Whereas the original unaveraged equations, together with appropriate initial and

boundary conditions could, in principle, be completely solved, the solution of the averaged equations is

indeterminate. That is, because of the nonlinearity of the basic equations, there are more unknowns than

equations ill the set of averaged equations. The addition of higher-order moment equations does not alle-

viate the problem; the number of unknowns goes up as fast as the number of equations when the added

moment equations are multipoint, whereas if the added equations are single-point, the number of unknowns

goes up/'aster. However, the use of those equations enables one to study the processes in turbulence. In

particular, the numerical solution of the instantaneous (unaveraged) equations enables one to calculate

terms in the averaged evolution equations. That procedure, in fact, provides a means of closing the sys-

tem of averaged equations without introducing information which is supplemental to the basic continuutn

equations.

Because of the engineering importance of obtaining solutions for turbulent flows at high Reynolds

numbers (where accurate numerical simulations cannot yet be carried out), much effort has been devoted

to modeling the undetermined terms in the averaged equations. To this end, we obtained some approxi-

mate solutions for a simple fully developed flow and heat transfer which were, however, based partially on

exact information. Other approximate solutions and closure schemes, including a frozen stress model for

highly accelerated flows, were also discussed. The basis for a mixing-length theory and the nature of tur-

bulent mixing were considered. Finally, the functional forms of the velocity and temperature profiles near

and away from a wall, and the logarithmic profiles for the velocity and temperature were derived.

However, the only turbulent solutions considered which could be called completely deductive are

numerical solutions of the unaveraged equations. As discussed, it is necessary to use supplementary infor-

mation if the equations are averaged, unless, of course, they are closed by a numerical solution of the ori-

ginal unaveraged equations. Attempts to obtain analytical solutions of the unaveraged equations have

not been successful,mostly because of the nonlinearity of those equations. Sensitive dependence of those
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equations on initial conditions, in fact, appears to preclude an analytical solution. It is mentioned by

Herring (ref. 55) that the simplest turbulence theory is just the Navier-Stokes equations; since most
turbulence calculations are numerical anyway, no insight is lost by considering direct integration of the

Navier-Stokes equations forward in time, starting with some suitable initial data. Because of its rele-

vance and importance in turbulence research, we give here a few additional remarks on direct numerical
solution.

Although numerical solution (or numerical simulation) bears some similarity to experiment there is

an important difference. The former uses directly, and attempts to solve, a given set of mathematical

equations (say the Navier-Stokes equations). The latter ordinarily does not, although both methods may

arrive at the same description of nature. A numerical solution is, in fact, much closer to a theoretical

solution than to experiment. A numerical solution differs from a theoretical one only in the tools that are

used; numerical methods and hlgh-speed computers may take place of, or supplement, analytical tools. A

significant difference is not, as sometimes stated, that the numerical solution is discrete; as many points

as desired can be calculated if a suitable interpolation formula is provided.

Because of the small scale of some of the turbulent eddies, accuracy is a problem in the numerical

study of turbulence. Smaller and smaller eddies are generated as the Reynolds number (strength) of the

turbulence increases. One can always pick a Reynolds number large enough that the results will be quan-
titatively inaccurate, no matter how fine the numerical mesh. On the other hand, turbulence at any fixed

Reynolds number could, in principle, be calculated, given the availability of a powerful enough computer.

Note that there does not seem to be a qualitative difference (no bifurcations) between low and high

Reynolds-number turbulence; in the latter the turbulent energy is just spread out over a (much) wider

range of eddy sizes. The mathematical or computational methods used may of course, be different for
higher Reynolds numbers.

Although we started this section with a discussion of averages and averaged equations, it has been
appropriate to close it with a discussion of numerical solutions of the original unaveraged equations, those

being the only completely deductive turbulent solutions considered thus far (see, e.g., refs. 17 and 49).

(Deductive refers here to solutions of the continuum equations which do not require an input of supple-

mentary information.) Note that, as mentioned earlier, a deductive solution of an unclosed averaged
equation (e.g., the evolution equation for the turbulent energy) can be obtained by using it in conjunction

with unaveraged equations_ the terms in the averaged equation being calculated from the numerical solu-

tion of the determinate unaveraged equations. As a final remark_ it seems unlikely that a turbulent

a_alytica] solution of the unaveraged equations could ever be obtained, because the solution would have

to be sensitively dependent on initial conditions (see chapter VI).

In order to continue with the analysis of turbulence, it will be necessary, or at least convenient, to

introduce Fourier analysis. That will be done in the next chapter.
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Figure 4-1 .--Sketch Illustrating development of turbulent shear
stress --pu_ or heat transfer pc _'u2 in presence of a mean
velocity or temperature gradient. Regardless of whether the
velocity fluctuation u2 is positive or negative, the product"_l,u 2
(or _-Q2)is negative (see section 4.3.1.1). Also Illustrated (in the

lower part of the figure) is a mixing-length theory, where t 2 Is

the mixing length and x2,0 is at the virtual origin of an eddy (see
section 4.3.2.2).
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Figure 4-2.--Velocity distribution for turbulent flow through a channel or pipe.
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Figure 4-4.--.Compadson of calculated Stanton numbers with experiment. (For the mass-transfer data the tem-

peratures Tw and T a are replaced by concentrations, and the molecular thermal diffusivity cx is replaced by a

diffusivity for mass transfer.)
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Figure 4-5.--Predicted early and intermediate development of mean velocity profile

in a turbulent boundary layer with severe favorable pressure gradients and com-
parison with experiments. Symbols indicate experimental data points.
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theory equation (4-135)
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Figure 4-6, --Semi-logarithmic law-of-the-wall plot of

theoretical velocity profiles for severe favorable pressure

gradients and comparison with experiment of Patel &

Head (ref. 44). (Note shifted vertical scales.) Symbols

Indicate experimental data points.
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Figure 4-7. _Effect of neglecting Reynolds shear stress on

theoretical law-of-the-waU plot for experimental conditions

of figure 4-5. (Noted shifted vertical scales.)
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Figure 4-8.--Contribution of various terms in eq. (4-128) to streamwise rate of
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Note that transverse component of kinetic energy is negligible for a boundary
layer.
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short highly accelerated turbulent boundary layers, x 0 is value of x_ at initial station. Km is maximum value of

(v/j_J= 3) dP/dx I for a particular run.
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Figure 4-14.--Plot of terms in one-point equation for evolution of kinetic energy (eq. (4-144)) for fully

developed channel flow. Results obtained by numerical solution of unave_qed Navler-Stokes equa-
tions (Mansour, Kim, and Moin ref. 49). Terms nondimensionalized by_-_-_and v. Channel Reynolds

number (based on centerllne U1 and channel half-width) is 3200.
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Figure 4-15.--Plot of turbulence kinetic energy for fully developed channel flow in figures 4-14 and 4-2. Results obtained by numerical

solution of unaveraged Navier-Stokes equations (Kim, Moin, and Moser, ref. 17).
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Figure 4-16---Variation of two-point correlation coefficients with point seperation as obtained by Kim, Moin, and Moser (ref. 17) from a
direct numerical simulation of unaveraged Navier-Stokes equations, x_/(x2) ¢ = 0.030, x2+ = 5.39.
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Figure 4-17.--Vector configuration for two-point correlation
equations.
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Figure 4-18.--Comparison of eq. (4-153) and solution for laminar
flow, with pipe-flow data in turbulent transition and laminar
regions.
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